HDU 6134 Battlestation Operational(莫比乌斯反演)
【题目链接】 http://acm.hdu.edu.cn/showproblem.php?pid=6134
【题目大意】
求$\sum_{i=1}^{n}{\sum_{j=1}^{i}\lceil{\frac{i}{j}}\rceil}[ (i,j)==1 ]$
【题解】
设 $g(i)=\sum_{i=1}^{n}{\sum_{j=1}^{i}\lceil{\frac{i}{j}}\rceil}$,$h(i)=\sum_{i=1}^{n}{\sum_{j=1}^{i}\lceil{\frac{i}{j}}\rceil}[ (i,j)==1 ]$
有 $g(i)=\sum_{d|i}{\sum_{j=1}^{\frac{i}d}\lceil\frac{i}{d*j}\rceil}[ (i,j*d)==d ]$
$=\sum_{d|i}{\sum_{j=1}^{\frac{i}d}\lceil\frac{\frac{i}d}{j}}\rceil[ (\frac{i}d,j)==1 ]$
$=\sum_{d|i}h(\frac{i}d)$
$=\sum_{d|i}h(d)$
所以有$h(i)=\sum_{d|i}\mu(d)*g(\frac{i}d)$
考虑如何计算 $g(i)$
我们发现$i$对于$i$贡献为$1$,$i+1$到$2*i$贡献为$2$,$2*i+1$到$3*i$贡献为$3$……
贡献为区间更新,因此我们可以用差分数列统计,计算出$g(i)$之后,反演计算$h(i)$即可。
【代码】
#include <cstdio>
#include <algorithm>
using namespace std;
const int N=1000010;
typedef long long LL;
const LL P=1000000007LL;
int tot,p[N],miu[N],v[N];
void Mobius(int n){
int i,j;
for(miu[1]=1,i=2;i<=n;i++){
if(!v[i])p[tot++]=i,miu[i]=-1;
for(j=0;j<tot&&i*p[j]<=n;j++){
v[i*p[j]]=1;
if(i%p[j])miu[i*p[j]]=-miu[i];else break;
}
}
}
LL sum[N],ans[N];
void AddMod(LL &a,LL b){a+=b;if(a>=P)a-=P;if(a<0)a+=P;}
void Init(int n){
for(int j=1;j<=n;j++){ans[j]++;for(int i=j;i<=n;i+=j)ans[i+1]++;}
for(int i=1;i<=n;i++)AddMod(ans[i],ans[i-1]);
for(int j=1;j<=n;j++){if(miu[j])for(int i=j;i<=n;i+=j)AddMod(sum[i],miu[j]*ans[i/j]);}
for(int i=1;i<=n;i++)AddMod(sum[i],sum[i-1]);
}
int n;
int main(){
Mobius(1000000);
Init(1000000);
while(~scanf("%d",&n))printf("%d\n",sum[n]);
return 0;
}
HDU 6134 Battlestation Operational(莫比乌斯反演)的更多相关文章
- hdu 6134 Battlestation Operational 莫比乌斯反演
Battlestation Operational Time Limit: 6000/3000 MS (Java/Others) Memory Limit: 65536/65536 K (Jav ...
- 2017多校第8场 HDU 6134 Battlestation Operational 莫比乌斯反演
题目链接:http://acm.hdu.edu.cn/showproblem.php?pid=6134 题意: 解法: 那么g(n)怎么求,我们尝试打表发现g(n)是有规律的,g(n)=g(n-1)+ ...
- hdu 6134 Battlestation Operational (莫比乌斯反演+埃式筛)
Problem Description > The Death Star, known officially as the DS-1 Orbital Battle Station, also ...
- 2017ACM暑期多校联合训练 - Team 8 1002 HDU 6134 Battlestation Operational (数论 莫比乌斯反演)
题目链接 Problem Description The Death Star, known officially as the DS-1 Orbital Battle Station, also k ...
- hdu 6134: Battlestation Operational (2017 多校第八场 1002)【莫比乌斯】
题目链接 比赛时没抓住重点,对那个受限制的“分数求和”太过关心了..其实如果先利用莫比乌斯函数的一个性质把后面那个[gcd(i,j)=1]去掉,那么问题就可以简化很多.公式如下 这和之前做过的一道题很 ...
- HDU 6134 Battlestation Operational | 2017 Multi-University Training Contest 8
破结论没听说过,上式推导到第三步的时候有了O(nlogn) 的做法(枚举倍数+1最后前缀和),并且这种做法可以直接应用到向上取整的计算中,详见forever97 但由于d(n)是积性函数,故可O(n) ...
- hdu6134 Battlestation Operational 莫比乌斯第一种形式
/** 题目:hdu6134 Battlestation Operational 链接:http://acm.hdu.edu.cn/showproblem.php?pid=6134 题意:f(n) = ...
- HDU 5321 Beautiful Set (莫比乌斯反演 + 逆元 + 组合数学)
题意:给定一个 n 个数的集合,然后让你求两个值, 1.是将这个集合的数进行全排列后的每个区间的gcd之和. 2.是求这个集合的所有的子集的gcd乘以子集大小的和. 析:对于先求出len,len[i] ...
- HDU 4746 Mophues【莫比乌斯反演】
题目链接: http://acm.hdu.edu.cn/showproblem.php?pid=4746 题意: 1≤x,y≤n , 求gcd(x,y)分解后质因数个数小于等k的(x,y)的对数. 分 ...
随机推荐
- 在Unity中实现屏幕空间反射Screen Space Reflection(4)
第四部分讲一下如何在2D屏幕空间步进光线. http://casual-effects.blogspot.com/2014/08/screen-space-ray-tracing.html 中的代码感 ...
- Hibernate总结之常用API
1. Configuration Configuration是用来读取配置文件,从配置文件中构件SessionFactory的. SessionFactory sessionFactory=new C ...
- hdu 1498 50 years, 50 colors(二分匹配_匈牙利算法)
题目链接:http://acm.hdu.edu.cn/showproblem.php?pid=1498 50 years, 50 colors Time Limit: 2000/1000 MS (Ja ...
- VirtualBox与Genymotion命令行启动
一.VirtualBox命令行启动 1.添加环境变量: %programfiles%\Oracle\VirtualBox 2.用VBoxManage查看已存在vmname|uuid命令: VBoxMa ...
- C/C++——#和##操作符
1. #操作符 使用阶段:预处理阶段,只有宏定义中使用(#define) 作用:将宏参数转换为字符串 示例: #define STRING(x) #x 2. ##操作符 使用阶段:预处理阶段,只有宏定 ...
- 创建一个简单的Maven工程
Maven的工程结构如下图所示: 大致来看,Maven的工程结构如下: 在创建maven工程时,可以通过骨架创建,也可以不通过骨架创建. 我们先用idea通过骨架创建一个Maven工程. 配置pom. ...
- ImageNet Classification with Deep Convolutional Neural Network(转)
这篇论文主要讲了CNN的很多技巧,参考这位博主的笔记:http://blog.csdn.net/whiteinblue/article/details/43202399 https://blog.ac ...
- Linux下web服务的搭建
1.安装Apache Apache的官网地址为:http://httpd.apache.org/,这里以源码的方式进行安装,我们下载的版本是“httpd-2.4.25.tar.gz”,下载后的压缩文件 ...
- Windows内核进程管理器解析
Windows内核是如何实现线程挂起的?如何实现线程挂载到进程的?如何实现杀死进程和线程的? 从源码分析一下,这些操作具体在源码上是如何实现的. 进程创建.线程切换.线程跨越CPU权限级.进程挂靠.杀 ...
- c++ 容器学习 理论
[转载]http://blog.csdn.net/acosoft/article/details/4395468 在面向对象的语言中,大多引入了容器的概念.那么 什么 是 容器?实质上就是一组相同类型 ...