D. Tree
time limit per test

2 seconds

memory limit per test

512 megabytes

input

standard input

output

standard output

You are given a node of the tree with index 1 and with weight 0. Let cnt be the number of nodes in the tree at any instant (initially, cnt is set to 1). Support Q queries of following two types:

  •  Add a new node (index cnt + 1) with weight W and add edge between node R and this node.
  •  Output the maximum length of sequence of nodes which
    1. starts with R.
    2. Every node in the sequence is an ancestor of its predecessor.
    3. Sum of weight of nodes in sequence does not exceed X.
    4. For some nodes i, j that are consecutive in the sequence if i is an ancestor of j then w[i] ≥ w[j] and there should not exist a node k on simple path from i to j such that w[k] ≥ w[j]

The tree is rooted at node 1 at any instant.

Note that the queries are given in a modified way.

Input

First line containing the number of queries Q (1 ≤ Q ≤ 400000).

Let last be the answer for previous query of type 2 (initially last equals 0).

Each of the next Q lines contains a query of following form:

  • 1 p q (1 ≤ p, q ≤ 1018): This is query of first type where  and . It is guaranteed that 1 ≤ R ≤ cnt and0 ≤ W ≤ 109.
  • 2 p q (1 ≤ p, q ≤ 1018): This is query of second type where  and . It is guaranteed that 1 ≤ R ≤ cntand 0 ≤ X ≤ 1015.

 denotes bitwise XOR of a and b.

It is guaranteed that at least one query of type 2 exists.

Output

Output the answer to each query of second type in separate line.

Examples
input
6
1 1 1
2 2 0
2 2 1
1 3 0
2 2 0
2 2 2
output
0
1
1
2
input
6
1 1 0
2 2 0
2 0 3
1 0 2
2 1 3
2 1 6
output
2
2
3
2
input
7
1 1 2
1 2 3
2 3 3
1 0 0
1 5 1
2 5 0
2 4 0
output
1
1
2
input
7
1 1 3
1 2 3
2 3 4
1 2 0
1 5 3
2 5 5
2 7 22
output
1
2
3
Note

In the first example,

last = 0

- Query 1: 1 1 1, Node 2 with weight 1 is added to node 1.

- Query 2: 2 2 0, No sequence of nodes starting at 2 has weight less than or equal to 0. last = 0

- Query 3: 2 2 1, Answer is 1 as sequence will be {2}. last = 1

- Query 4: 1 2 1, Node 3 with weight 1 is added to node 2.

- Query 5: 2 3 1, Answer is 1 as sequence will be {3}. Node 2 cannot be added as sum of weights cannot be greater than 1. last = 1

- Query 6: 2 3 3, Answer is 2 as sequence will be {3, 2}. last = 2

题目大意:一棵树,每个点有点权,两种操作:1.新加一个点连接r,权值为w.  2.从一个点r开始往祖先上跳,每次跳到第一个值≥自身的祖先,将跳到的点的和加起来,不能大于w,问能跳几次.

分析:挺有意思的一道题.

   暴力算法就是一个一个往上跳着找喽,在树上往上跳有一种常用的优化方法--倍增.在这道题里面可以倍增地跳到≥自身权值的点.

   考虑怎么实现,fa数组就不能记录第2^i个祖先了,而要记录比自身权值大的第2^i个祖先.在加点的时候处理.可以发现,一旦处理出fa[i][0],就能够根据祖先节点的信息推出fa[i][j].

   如何处理fa[i][0]?如果r的权值比新加的点i的权值大或相等,则fa[i][0] = r,否则从r开始往上跳,如果w[fa[r][j]] < w[i],则往上跳,最后fa[i][0] = fa[r][0].

   因为最后要求和嘛,可以顺便维护一个sum数组,表示从i这个点跳到比i权值大的第2^j个祖先跳到的点的权值和为多少. 求出了这两个数组以后查询就很好办了,sum[i][j]是否≤w,是的话就往上跳,并且w -= sum[i][j].倍增的基础应用嘛.

   想清楚如何加速往祖先跳的过程,以及倍增应该维护什么东西这道题就能解决了.

   一些边界的值需要特殊考虑!

#include <cstdio>
#include <cstring>
#include <iostream>
#include <algorithm> using namespace std; typedef long long ll;
const ll maxn = ,inf = 1e18;
ll q,lastans,cnt = ,w[maxn];
ll fa[maxn][],sum[maxn][]; void add(ll x,ll v)
{
w[++cnt] = v;
if (w[cnt] <= w[x])
fa[cnt][] = x;
else
{
int y = x;
for (int i = ; i >= ; i--)
{
if (w[fa[y][i]] < w[cnt])
y = fa[y][i];
}
fa[cnt][] = fa[y][];
}
if (fa[cnt][] == )
sum[cnt][] = inf;
else
sum[cnt][] = w[fa[cnt][]];
for (int i = ; i <= ; i++)
{
fa[cnt][i] = fa[fa[cnt][i - ]][i - ];
if (fa[cnt][i] == )
sum[cnt][i] = inf;
else
sum[cnt][i] = sum[cnt][i - ] + sum[fa[cnt][i - ]][i - ];
}
} ll query(ll x,ll v)
{
if (w[x] > v)
return ;
v -= w[x];
ll res = ;
for (int i = ; i >= ; i--)
{
if (v >= sum[x][i])
{
v -= sum[x][i];
res += ( << i);
x = fa[x][i];
}
}
return res;
} int main()
{
w[] = inf;
for (int i = ; i <= ; i++)
sum[][i] = inf;
scanf("%I64d",&q);
while (q--)
{
int id;
ll a,b;
scanf("%d",&id);
scanf("%I64d%I64d",&a,&b);
a ^= lastans;
b ^= lastans;
if (id == )
add(a,b);
else
printf("%I64d\n",lastans = query(a,b));
}
}

Codeforces 932.D Tree的更多相关文章

  1. Problem - D - Codeforces Fix a Tree

    Problem - D - Codeforces  Fix a Tree 看完第一名的代码,顿然醒悟... 我可以把所有单独的点全部当成线,那么只有线和环. 如果全是线的话,直接线的条数-1,便是操作 ...

  2. Codeforces 765 E. Tree Folding

    题目链接:http://codeforces.com/problemset/problem/765/E $DFS子$树进行$DP$ 大概分以下几种情况: 1.为叶子,直接返回. 2.长度不同的路径长度 ...

  3. Codeforces 932 E. Team Work(组合数学)

    http://codeforces.com/contest/932/problem/E 题意:   可以看做 有n种小球,每种小球有无限个,先从中选出x种,再在这x种小球中任选k个小球的方案数 选出的 ...

  4. codeforces 570 D. Tree Requests 树状数组+dfs搜索序

    链接:http://codeforces.com/problemset/problem/570/D D. Tree Requests time limit per test 2 seconds mem ...

  5. CodeForces 383C Propagating tree

    Propagating tree Time Limit: 2000ms Memory Limit: 262144KB This problem will be judged on CodeForces ...

  6. 【19.77%】【codeforces 570D】Tree Requests

    time limit per test2 seconds memory limit per test256 megabytes inputstandard input outputstandard o ...

  7. CodeForces - 274B Zero Tree

    http://codeforces.com/problemset/problem/274/B 题目大意: 给定你一颗树,每个点上有权值. 现在你每次取出这颗树的一颗子树(即点集和边集均是原图的子集的连 ...

  8. Codeforces 343D Water Tree(DFS序 + 线段树)

    题目大概说给一棵树,进行以下3个操作:把某结点为根的子树中各个结点值设为1.把某结点以及其各个祖先值设为0.询问某结点的值. 对于第一个操作就是经典的DFS序+线段树了.而对于第二个操作,考虑再维护一 ...

  9. codeforces 375D:Tree and Queries

    Description You have a rooted tree consisting of n vertices. Each vertex of the tree has some color. ...

随机推荐

  1. Python的sys.argv使用说明

    刚开始使用这个参数的时候,很不明白其含义.网上搜索很多都是贴的官网上面的一则实例,说看懂,就明白.可是,我看不懂.现在在回头看这个参数使用,并不是很麻烦. 举几个小例子就明白了. 创建一个脚本,内容如 ...

  2. mongoDB操作2

    一.find操作 MongoDB中使用find来进行查询,通过指定find的第一个参数可以实现全部和部分查询. 1.查询全部 空的查询文档{}会匹配集合的全部内容.如果不指定查询文档,默认就是{}. ...

  3. 6. B树

    一.B 树是一种多叉平衡查找树 相较于二叉结构的红黑树,B 树是多叉结构,所以在元素数量非常多的情况下,B 树的高度不会像二叉树那么大,从而保证查询效率. 一棵含 n 个结点的 B 树的高度 h = ...

  4. Masha and Bears(翻译+思维)

    Description A family consisting of father bear, mother bear and son bear owns three cars. Father bea ...

  5. 03慕课网《vue.js2.5入门》——Vue-cli的安装,创建webpack模板项目

    安装Vue-cli 第一种 貌似不可以,然后用了第二种,但是重装系统后,第二种不能用了,用了第一种可以 # 全局安装vue -cli命令npm install --global vue-cli # 创 ...

  6. Tomcat配置 —— server.xml

    Tomcat的核心组件是servlet容器. Tomcat各个组件之间的嵌套关系 server.xml配置如下: <Server port="8005" shutdown=& ...

  7. 1106C程序语法树

  8. Splash广告界面

    在软件开始启动时都是会使用一个splashActivity实现联网判断和相关资源的加载,在一款网络软件上开始时的缓存加载和网络判断可以为用户节省不必要的流量开销. 使用handler延时启动下一个ac ...

  9. kafka describe 显示结果解释

    > bin/kafka-topics.sh --describe --zookeeper localhost:2181 --topic my-replicated-topic Topic:my- ...

  10. Ubuntu 16.04出现:Problem executing scripts APT::Update::Post-Invoke-Success 'if /usr/bin/test -w /var/

    转自:http://blog.csdn.net/zzq123686/article/details/77454066 出现错误信息: Reading package lists... Done E:  ...