http://www.lydsy.com/JudgeOnline/problem.php?id=1079

只能想到5^15的做法。。。。。。。。。。。。。。。。。。。。。。。。。。。果然我太弱。

其实应该是没利用好题目的信息,ci<=5!

那么我们可以将颜色所剩余的格子看做一种等价类!

即,设状态f[a,b,c,d,e]表示还剩1个格子的颜色有a种,剩2个格子的颜色有b种...依次类推,且当前正在放第n-1*a-2*b-3*c-4*d-5*e+1格子。那么转移就是

f[a,b,c,d,e]=a*f[a-1,b,c,d,e]+b*f[a+1,b-1,c,d,e]+c*f[a,b+1,c-1,d,e]+...+e*f[a,b,c,d+1,e-1]

可是我们发现没有考虑相邻的情况?没事!我们可以加一维!

我们再加一维,表示上一次用的颜色是等价类last,那么这一次计算的时候因为不能相邻,那么这个这一次放last-1的颜色时要少一个,所以是a-1或b-1或....或e-1然后再乘上后边的f。

那么转移就变成了:

f[a,b,c,d,e,last]=(a-(last==2))*f[a-1,b,c,d,e]+(b-(last==3))*f[a+1,b-1,c,d,e]+(c-(last==4))*f[a,b+1,c-1,d,e]+...+(e-(last==6))*f[a,b,c,d+1,e-1]

而last==6无意义,可以去掉。

那么记忆化搜索即可。

真是一道好题!

#include <cstdio>
#include <cstring>
#include <cmath>
#include <string>
#include <iostream>
#include <algorithm>
#include <queue>
#include <set>
#include <map>
using namespace std;
typedef long long ll;
#define rep(i, n) for(int i=0; i<(n); ++i)
#define for1(i,a,n) for(int i=(a);i<=(n);++i)
#define for2(i,a,n) for(int i=(a);i<(n);++i)
#define for3(i,a,n) for(int i=(a);i>=(n);--i)
#define for4(i,a,n) for(int i=(a);i>(n);--i)
#define CC(i,a) memset(i,a,sizeof(i))
#define read(a) a=getint()
#define print(a) printf("%d", a)
#define dbg(x) cout << (#x) << " = " << (x) << endl
#define error(x) (!(x)?puts("error"):0)
#define rdm(x, i) for(int i=ihead[x]; i; i=e[i].next)
inline const int getint() { int r=0, k=1; char c=getchar(); for(; c<'0'||c>'9'; c=getchar()) if(c=='-') k=-1; for(; c>='0'&&c<='9'; c=getchar()) r=r*10+c-'0'; return k*r; } const ll MD=1000000007;
ll f[17][17][17][17][17][6];
ll dp(int a, int b, int c, int d, int e, int last) {
if((a|b|c|d|e)==0) return 1;
if(f[a][b][c][d][e][last]) return f[a][b][c][d][e][last];
ll ret=0;
if(a) ret+=dp(a-1, b, c, d, e, 1)*(a-(last==2));
if(b) ret+=dp(a+1, b-1, c, d, e, 2)*(b-(last==3));
if(c) ret+=dp(a, b+1, c-1, d, e, 3)*(c-(last==4));
if(d) ret+=dp(a, b, c+1, d-1, e, 4)*(d-(last==5));
if(e) ret+=dp(a, b, c, d+1, e-1, 5)*e;
return f[a][b][c][d][e][last]=ret%MD;
} int a[6];
int main() {
int n=getint();
for1(i, 1, n) a[getint()]++;
printf("%lld\n", dp(a[1], a[2], a[3], a[4], a[5], 0));
return 0;
}

  


Description

有n个木块排成一行,从左到右依次编号为1~n。你有k种颜色的油漆,其中第i种颜色的油漆足够涂ci个木块。所有油漆刚好足够涂满所有木块,即c1+c2+...+ck=n。相邻两个木块涂相同色显得很难看,所以你希望统计任意两个相邻木块颜色不同的着色方案。

Input

第一行为一个正整数k,第二行包含k个整数c1, c2, ... , ck。

Output

输出一个整数,即方案总数模1,000,000,007的结果。

Sample Input

3
1 2 3

Sample Output

10

HINT

100%的数据满足:1 <= k <= 15, 1 <= ci <= 5

Source

【BZOJ】1079: [SCOI2008]着色方案(dp+特殊的技巧)的更多相关文章

  1. bzoj 1079: [SCOI2008]着色方案 DP

    1079: [SCOI2008]着色方案 Time Limit: 10 Sec  Memory Limit: 162 MBSubmit: 803  Solved: 512[Submit][Status ...

  2. BZOJ 1079: [SCOI2008]着色方案 记忆化搜索

    1079: [SCOI2008]着色方案 Time Limit: 20 Sec Memory Limit: 256 MB 题目连接 http://www.lydsy.com/JudgeOnline/p ...

  3. BZOJ 1079: [SCOI2008]着色方案(巧妙的dp)

    BZOJ 1079: [SCOI2008]着色方案(巧妙的dp) 题意:有\(n\)个木块排成一行,从左到右依次编号为\(1\)~\(n\).你有\(k\)种颜色的油漆,其中第\(i\)种颜色的油漆足 ...

  4. BZOJ 1079 [SCOI2008]着色方案

    http://www.lydsy.com/JudgeOnline/problem.php?id=1079 思路:如果把每种油漆看成一种状态,O(5^15)不行 DP[a][b][c][d][e][f] ...

  5. bzoj 1079: [SCOI2008]着色方案【记忆化搜索】

    本来打算把每个颜色剩下的压起来存map来记忆化,写一半发现自己zz了 考虑当前都能涂x次的油漆本质是一样的. 直接存五个变量分别是剩下12345个格子的油漆数,然后直接开数组把这个和步数存起来,记忆化 ...

  6. BZOJ1079:[SCOI2008]着色方案(DP)

    Description 有n个木块排成一行,从左到右依次编号为1~n.你有k种颜色的油漆,其中第i种颜色的油漆足够涂ci个木块. 所有油漆刚好足够涂满所有木块,即c1+c2+...+ck=n.相邻两个 ...

  7. 1079: [SCOI2008]着色方案

    链接 思路 首先是dp,如果直接用每个种颜色的剩余个数做状态的话,复杂度为5^15. 由于c<=5,所以用剩余数量的颜色的种类数做状态:f[a][b][c][d][e][last]表示剩余数量为 ...

  8. bzoj1079: [SCOI2008]着色方案

    ci<=5直接想到的就是5维dp了...dp方程YY起来很好玩...写成记忆化搜索比较容易 #include<cstdio> #include<cstring> #inc ...

  9. [SCOI2008]着色方案

    1079: [SCOI2008]着色方案 Time Limit: 10 Sec  Memory Limit: 162 MBSubmit: 2228  Solved: 1353[Submit][Stat ...

随机推荐

  1. ACM 刷题错误总结 持续更新并持续回想中o(╯□╰)o

    一.段错误/RE 1.& 变量取地址 2.数组越界 3.爆栈, 非常可能是死循环,ruturn的边界没有处理好,或者是递归的内容里有死循环的部分. 4.线段树 逢写必错,都是build(i*2 ...

  2. Python 创建元组tuple

    创建tupletuple是另一种有序的列表,中文翻译为“ 元组 ”.tuple 和 list 非常类似,但是,tuple一旦创建完毕,就不能修改了.同样是表示班里同学的名称,用tuple表示如下:&g ...

  3. 有关索引的DMV(转)

    转自:http://www.cnblogs.com/CareySon/archive/2012/05/17/2505981.html 1.查看那些被大量更新,却很少被使用的索引 SET TRANSAC ...

  4. Android 断点续传下载

    断点续传在面试中出现的概率还是比较大的,因为一般的应用都需要. 这个代码是从网上找来的,自己改了点东西,能跑通,但是这个代码并不是最优代码和设计.但是基本思路体现出来了,可以以这个为基础来进行修改.先 ...

  5. 滚动居中效果(frame版)

    <!DOCTYPE html PUBLIC "-//W3C//DTD XHTML 1.0 Transitional//EN" "http://www.w3.org/ ...

  6. AI的分支学科

    AI 的分支学科 [References]AAI(Advanced Artificial Intelligence)

  7. 【LeetCode】101. Symmetric Tree (2 solutions)

    Symmetric Tree Given a binary tree, check whether it is a mirror of itself (ie, symmetric around its ...

  8. 摘:C++ 枚举类型

    C++ 中的枚举类型继承于 C 语言.就像其他从 C 语言继承过来的很多特性一样,C++ 枚举也有缺点,这其中最显著的莫过于作用域问题——在枚举类型中定义的常量,属于定义枚举的作用域,而不属于这个枚举 ...

  9. springboot 异步任务

    Spring Boot 揭秘与实战(七) 实用技术篇 - 异步任务拓展阅读: http://www.jianshu.com/p/86e915d616c4 发表于 2017-01-06 | Spring ...

  10. Sublime Text 使用指南 - 前端开发神器

    Sublime Text 前端开发的神器 Sublime Text是一个前端开发者必备的编辑器,大量的插件,完善的功能,优越的性能,有非常多的特色,给前端开发提供了一个完善的开发条件. 本文主要介绍的 ...