Wall

Time Limit: 2000/1000 MS (Java/Others)    Memory Limit: 65536/32768 K (Java/Others)
Total Submission(s): 2848    Accepted Submission(s): 811

Problem Description
Once upon a time there was a greedy King who ordered his chief Architect to build a wall around the King's castle. The King was so greedy, that he would not listen to his Architect's proposals to build a beautiful brick wall with a perfect shape and nice tall towers. Instead, he ordered to build the wall around the whole castle using the least amount of stone and labor, but demanded that the wall should not come closer to the castle than a certain distance. If the King finds that the Architect has used more resources to build the wall than it was absolutely necessary to satisfy those requirements, then the Architect will loose his head. Moreover, he demanded Architect to introduce at once a plan of the wall listing the exact amount of resources that are needed to build the wall.
Your task is to help poor Architect to save his head, by writing a program that will find the minimum possible length of the wall that he could build around the castle to satisfy King's requirements.

The task is somewhat simplified by the fact, that the King's castle has a polygonal shape and is situated on a flat ground. The Architect has already established a Cartesian coordinate system and has precisely measured the coordinates of all castle's vertices in feet.

 
Input
The first line of the input file contains two integer numbers N and L separated by a space. N (3 <= N <= 1000) is the number of vertices in the King's castle, and L (1 <= L <= 1000) is the minimal number of feet that King allows for the wall to come close to the castle.

Next N lines describe coordinates of castle's vertices in a clockwise order. Each line contains two integer numbers Xi and Yi separated by a space (-10000 <= Xi, Yi <= 10000) that represent the coordinates of ith vertex. All vertices are different and the sides of the castle do not intersect anywhere except for vertices.

 
Output
Write to the output file the single number that represents the minimal possible length of the wall in feet that could be built around the castle to satisfy King's requirements. You must present the integer number of feet to the King, because the floating numbers are not invented yet. However, you must round the result in such a way, that it is accurate to 8 inches (1 foot is equal to 12 inches), since the King will not tolerate larger error in the estimates.

This problem contains multiple test cases!

The first line of a multiple input is an integer N, then a blank line followed by N input blocks. Each input block is in the format indicated in the problem description. There is a blank line between input blocks.

The output format consists of N output blocks. There is a blank line between output blocks.

 
Sample Input
1
 
 
9 100
200 400
300 400
300 300
400 300
400 400
500 400
500 200
350 200
200 200
 
Sample Output
1628
 
Source
 
Recommend
JGShining   |   We have carefully selected several similar problems for you:  1392 2150 1147 1558 2202 

 
  计算几何:凸包
  这道题是求凸包周长,思路是选定一个纵坐标(y)最小的点为凸包第一个点,然后遍历所有点通过比较叉积,求出在当前点逆时针方向的最后一个点为第二个点,之后依次类推求出构成凸包的点的顺序。
  例如这道题提供的样例,构成凸包的点顺序依次为:
  7 - 8 - 9 - 1 - 2 - 5 - 6 - 

  最后一个点回到起点,这就构成了一个凸包。

  思路详见:

  http://dev.gameres.com/Program/Abstract/Geometry.htm#凸包的求法

  之后根据两点间的距离公式求出凸包周长,这道题还要再加上国王周围一个圆的周长(圆半径为L)。

  注意输出不需要浮点部分,直接控制输出浮点数位数为0。

  自己写的模板(求凸包周长):

 struct Point{
double x,y;
};
double dis(Point p1,Point p2)
{
return sqrt((p1.x-p2.x)*(p1.x-p2.x)+(p1.y-p2.y)*(p1.y-p2.y));
}
double xmulti(Point p1,Point p2,Point p0) //求p1p0和p2p0的叉积,如果大于0,则p1在p2的顺时针方向
{
return (p1.x-p0.x)*(p2.y-p0.y)-(p2.x-p0.x)*(p1.y-p0.y);
}
double graham(Point p[],int n) //点集和点的个数
{
int pl[];
//找到纵坐标(y)最小的那个点,作第一个点
int t = ;
for(int i=;i<=n;i++)
if(p[i].y < p[t].y)
t = i;
pl[] = t;
//顺时针找到凸包点的顺序,记录在 int pl[]
int num = ; //凸包点的数量
do{ //已确定凸包上num个点
num++; //该确定第 num+1 个点了
t = pl[num-]+;
if(t>n) t = ;
for(int i=;i<=n;i++){ //核心代码。根据叉积确定凸包下一个点。
double x = xmulti(p[i],p[t],p[pl[num-]]);
if(x<) t = i;
}
pl[num] = t;
} while(pl[num]!=pl[]);
//计算凸包周长
double sum = ;
for(int i=;i<num;i++)
sum += dis(p[pl[i]],p[pl[i+]]);
return sum;
}

  本题代码:

 #include <iostream>
#include <cmath>
#include <iomanip>
using namespace std;
struct Point{
double x,y;
};
double dis(Point p1,Point p2)
{
return sqrt((p1.x-p2.x)*(p1.x-p2.x)+(p1.y-p2.y)*(p1.y-p2.y));
}
double xmulti(Point p1,Point p2,Point p0) //求p1p0和p2p0的叉积,如果大于0,则p1在p2的顺时针方向
{
return (p1.x-p0.x)*(p2.y-p0.y)-(p2.x-p0.x)*(p1.y-p0.y);
}
double graham(Point p[],int n) //点集和点的个数
{
int pl[];
//找到纵坐标(y)最小的那个点,作第一个点
int t = ;
for(int i=;i<=n;i++)
if(p[i].y < p[t].y)
t = i;
pl[] = t;
//顺时针找到凸包点的顺序,记录在 int pl[]
int num = ; //凸包点的数量
do{ //已确定凸包上num个点
num++; //该确定第 num+1 个点了
t = pl[num-]+;
if(t>n) t = ;
for(int i=;i<=n;i++){ //核心代码。根据叉积确定凸包下一个点。
double x = xmulti(p[i],p[t],p[pl[num-]]);
if(x<) t = i;
}
pl[num] = t;
} while(pl[num]!=pl[]);
//计算凸包周长
double sum = ;
for(int i=;i<num;i++)
sum += dis(p[pl[i]],p[pl[i+]]);
return sum;
}
const double PI = 3.1415927;
int main()
{
int T,N;
double L;
Point p[];
cin>>T;
cout<<setiosflags(ios::fixed)<<setprecision();
while(T--){
cin>>N>>L;
for(int i=;i<=N;i++)
cin>>p[i].x>>p[i].y;
cout<<graham(p,N)+*PI*L<<endl;
if(T)
cout<<endl;
}
return ;
}

Freecode : www.cnblogs.com/yym2013

hdu 1348:Wall(计算几何,求凸包周长)的更多相关文章

  1. POJ-1113 Wall 计算几何 求凸包

    题目链接:https://cn.vjudge.net/problem/POJ-1113 题意 给一些点,求一个能够包围所有点且每个点到边界的距离不下于L的周长最小图形的周长 思路 求得凸包的周长,再加 ...

  2. poj 1113:Wall(计算几何,求凸包周长)

    Wall Time Limit: 1000MS   Memory Limit: 10000K Total Submissions: 28462   Accepted: 9498 Description ...

  3. hdu 1392:Surround the Trees(计算几何,求凸包周长)

    Surround the Trees Time Limit: 2000/1000 MS (Java/Others)    Memory Limit: 65536/32768 K (Java/Other ...

  4. HDU 1392 凸包模板题,求凸包周长

    1.HDU 1392 Surround the Trees 2.题意:就是求凸包周长 3.总结:第一次做计算几何,没办法,还是看了大牛的博客 #include<iostream> #inc ...

  5. POJ 1113 Wall(Graham求凸包周长)

    题目链接 题意 : 求凸包周长+一个完整的圆周长. 因为走一圈,经过拐点时,所形成的扇形的内角和是360度,故一个完整的圆. 思路 : 求出凸包来,然后加上圆的周长 #include <stdi ...

  6. Wall---hdu1348(求凸包周长 模板)

    题目链接:http://acm.hdu.edu.cn/showproblem.php?pid=1348 求凸包周长+2*PI*L: #include <stdio.h> #include ...

  7. HDU 1392 Surround the Trees (凸包周长)

    题目链接:HDU 1392 Problem Description There are a lot of trees in an area. A peasant wants to buy a rope ...

  8. HDU 1348 Wall ( 凸包周长 )

    链接:传送门 题意:给出二维坐标轴上 n 个点,这 n 个点构成了一个城堡,国王想建一堵墙,城墙与城堡之间的距离总不小于一个数 L ,求城墙的最小长度,答案四舍五入 思路:城墙与城堡直线长度是相等的, ...

  9. hdu 1348 Wall(凸包模板题)

    题目链接:http://acm.hdu.edu.cn/showproblem.php?pid=1348 Wall Time Limit: 2000/1000 MS (Java/Others)    M ...

随机推荐

  1. MS SQL得到指定日期的当月月末

    MS SQL得到指定日期的当月月末 declare @ddate date ,,)) select @ddate --2016-01-31 declare @ddatetime datetime ,, ...

  2. 【Linux】od命令

    用途 od命令主要用于查看非文本文件,通过指定该命令的不同选项可以以十进制.八进制.十六进制和ASCII码来显示 全称 od的全称为:Octal Dump 参数 -t :后面接各种类型的显示方式 a ...

  3. oracle修改用户密码过期时间

    Oracle默认在default概要文件中设置了“PASSWORD_LIFE_TIME=180天”,导致密码过期,程序无法使用,业务进程会提示无法连接数据库等字样. --查询默认密码过期时间 SELE ...

  4. iOS 获得通讯录中联系人的所有属性--b

    ABAddressBookRef addressBook = ABAddressBookCreate(); CFArrayRef results = ABAddressBookCopyArrayOfA ...

  5. [Windows驱动开发](三)基础知识——驱动例程

    一.NT式驱动的基本例程 1. 驱动入口函数——DriverEntry // 驱动程序的一般性定义 NTSTATUS DriverEntry(IN PDRIVER_OBJECT pDriverObje ...

  6. 值得分享的Bootstrap Ace模板实现菜单和Tab页效果(转)

    Ace模板地址:http://code.google.com/p/ace-engine/wiki/AceTemplate(有时会打不开) Ace英文官网:http://wrapbootstrap.co ...

  7. C#中将图片转化成base64字符串

    厂址:http://www.cnblogs.com/yunfeifei/p/4165351.html 1.在C#中将图片转化成base64字符串: using System; using System ...

  8. Hystrix入门执行过程

    netflix-hystrix团队开发了hystrix-javanica,使用流行的java注解以及函数式编程,来替代hystrix枯燥的编程方法. 其主要是HystrixCommand注解的使用. ...

  9. 关于“Could not open ServletContext resource [/WEB-INF/applicationContext.xml]”解决方案

    问题说明,我在web.xml文件中进行了如下配置 <servlet> <servlet-name>dispatcherServlet</servlet-name> ...

  10. SpringCloud-服务注册与发现

    这里我们会用到Spring Cloud Netflix,该项目是Spring Cloud的子项目之一,主要内容是对Netflix公司一系列开源产品的包装,它为Spring Boot应用提供了自配置的N ...