Description

小Q最近学习了一些图论知识。根据课本,有如下定义。树:无回路且连通的无向图,每条边都有正整数的权值来表示其长度。如果一棵树有N个节点,可以证明其有且仅有N-1 条边。 路径:一棵树上,任意两个节点之间最多有一条简单路径。我们用 dis(a,b)
表示点a和点b的路径上各边长度之和。称dis(a,b)为a、b两个节点间的距离。  
 直径:一棵树上,最长的路径为树的直径。树的直径可能不是唯一的。 
现在小Q想知道,对于给定的一棵树,其直径的长度是多少,以及有多少条边满足所有的直径都经过该边。

Input

第一行包含一个整数N,表示节点数。 
接下来N-1行,每行三个整数a, b, c ,表示点 a和点b之间有一条长度为c
的无向边。

Output

共两行。第一行一个整数,表示直径的长度。第二行一个整数,表示被所有
直径经过的边的数量。

Sample Input

6
3 1 1000
1 4 10
4 2 100
4 5 50
4 6 100

Sample Output

1110
2

【样例说明】
直径共有两条,3 到2的路径和3到6的路径。这两条直径都经过边(3, 1)和边(1, 4)。

HINT

对于100%的测试数据:2≤N≤200000,所有点的编号都在1..N的范围内,

边的权值≤10^9。

就是让你求直径的长和直径并的数量。

直径当然好求,而直径并,一定是在一条直径上。

所以我们可以先求出一条最长链。而所有直径的并一定是最长链上连续的一段。

证明很简单:如果中间有分开而最后又和在一起,显然会形成一个环。

然后我们对于最长链上的每个点,dfs出其子树中理他最远的点,若两点之间的距离等于该点到直径一个端点的距离,那么显然这个点到端点之间这一段就不能用来统计答案了。

然后我们可以从左往右做一便这个操作,反向再做一遍,中间部分即为直径的并。

代码:

#include<iostream>
#include<vector>
#include<cstring>
using namespace std;
vector<int> a[],b[];
int last[],u,v,next[];
long long dis[],mmm[],op;
bool vv[];
void dfs1(int o,long long p,int q)
{
if(p>op){op=p;u=o;}
for(int i=;i<a[o].size();i++)
if((!vv[a[o][i]])&&(a[o][i]!=q))
{
vv[a[o][i]]=true;
dfs1(a[o][i],p+b[o][i],o);
}
}
void dfs2(int o,long long p,int q)
{
last[o]=q;
dis[o]=p;
if(p>op){op=p;v=o;}
for(int i=;i<a[o].size();i++)
if((!vv[a[o][i]])&&(a[o][i]!=q))
{
vv[a[o][i]]=true;
dfs2(a[o][i],p+b[o][i],o);
}
}
int main()
{
int n;
cin>>n;
for(int i=;i<n;i++)
{
int x,y,z;
cin>>x>>y>>z;
a[x].push_back(y);
b[x].push_back(z);
a[y].push_back(x);
b[y].push_back(z);
}
memset(vv,,sizeof(vv));op=;
dfs1(,,);
memset(vv,,sizeof(vv));op=;
dfs2(u,,);
int distance=dis[v];
cout<<dis[v]<<endl;
memset(vv,,sizeof(vv));
for(int i=v;i!=;i=last[i]) vv[i]=true;
for(int i=v;i!=;i=last[i])
{
op=;
dfs1(i,,);
mmm[i]=op;
}
int j=v;
for(int i=last[v];i!=;i=last[i]) next[i]=j,j=i;
int ans=;
int i;
for(i=j;i!=;i=next[i])
if(dis[v]-dis[i]==mmm[i]) break;
for(;i!=;i=last[i])
{
if(dis[i]==mmm[i]) break;
ans++;
}
cout<<ans<<endl;
return ;
}

[BZOJ3124]直径的更多相关文章

  1. 【bzoj3124】 Sdoi2013—直径

    http://www.lydsy.com/JudgeOnline/problem.php?id=3124 (题目链接) 题意 求树的直径以及直径的交. Solution 我的想法超麻烦,经供参考..思 ...

  2. bzoj3124: [Sdoi2013]直径 树形dp two points

    题目链接 bzoj3124: [Sdoi2013]直径 题解 发现所有直径都经过的边 一定在一条直径上,并且是连续的 在一条直径上找这段区间的两个就好了 代码 #include<map> ...

  3. BZOJ3124 SDOI2013直径

    本以为必有高论,结果是个思博题.随便找一条直径,最后答案肯定是这条直径上的连续一段,如果某分支长度等于直径上某端的长度这一端都要被剪掉. #include<iostream> #inclu ...

  4. 【BZOJ3124】[Sdoi2013]直径 树形DP(不用结论)

    [BZOJ3124][Sdoi2013]直径 Description 小Q最近学习了一些图论知识.根据课本,有如下定义.树:无回路且连通的无向图,每条边都有正整数的权值来表示其长度.如果一棵树有N个节 ...

  5. [bzoj3124] [Sdoi2013]直径

    看了child学长的题解才知道怎么写TAT http://www.cnblogs.com/ctlchild/p/5160272.html 以前不知道直径都是过重心的..代码改着改着就和标程完全一样了Q ...

  6. 2018.11.05 bzoj3124: [Sdoi2013]直径(树形dp)

    传送门 一道sbsbsb树形dpdpdp 第一问直接求树的直径. 考虑第二问问的边肯定在同一条直径上均是连续的. 因此我们将直径记下来. 然后对于直径上的每一个点,dpdpdp出以这个点为根的子树中不 ...

  7. bzoj千题计划134:bzoj3124: [Sdoi2013]直径

    http://www.lydsy.com/JudgeOnline/problem.php?id=3124 第一问: dfs1.dfs2 dfs2中记录dis[i]表示点i距离最长链左端点的距离 第二问 ...

  8. BZOJ3124 [Sdoi2013]直径 【树的直径】

    题目 小Q最近学习了一些图论知识.根据课本,有如下定义.树:无回路且连通的无向图,每条边都有正整数的权值来表示其长度.如果一棵树有N个节点,可以证明其有且仅有N-1 条边. 路径:一棵树上,任意两个节 ...

  9. 【bzoj3124】[Sdoi2013]直径

    1.求树的直径: 先随便取一个点,一遍dfs找到离它最远的点l1,再以l1为起点做一遍dfs,找到离l1最远的点l2   那么l1到l2的距离即为直径   2. 求出有多少条边在这棵树的所有直径上:  ...

随机推荐

  1. traceroute tracert 路由器地址 清单 192.168.2.1 网关路由器地址

    [root@a ~]# traceroute www.ijntv.cntraceroute to www.ijntv.cn (42.81.61.31), 30 hops max, 60 byte pa ...

  2. (N)IO Frameworks in Java

    (N)IO Frameworks in Java – Thread.currentThread.join() https://www.ashishpaliwal.com/blog/2008/10/ni ...

  3. C++的全部目标就是最优化资源的利用,以人付出更多为代价。Python刚好是另一个极端(Bjarne就说,一个人至少应该掌握两种计算机语言)

    说 C++ 反人类,是如果把 C++ 看作人(程序员)和资源(电子系统)的桥梁,他的全部目标就是最优化资源的利用,以人付出更多为代价.Python刚好是另一个极端.做好两个一起学.Bjarne就说,一 ...

  4. django 模板语言之 simple_tag 自定义模板

    自定义函数 simple_tag a. app项目下创建templatetags目录 b. 创建任意xxoo.py文件 用做自定义py函数 c. 创建template对象 register 在函数或者 ...

  5. Jenkins的安装及邮件配置

    Jenkins介绍  Jenkins,是基于Java开发的一种持续集成工具,用于监控秩序重复的工作,包括: 1).持续的软件版本发布/测试项目. 2).监控外部调用执行的工作. Jenkins安装 j ...

  6. 20165324 2017-2018-2 《Java程序设计》课程总结

    20165324 2017-2018-2 <Java程序设计>课程总结 每周作业链接汇总 预备作业1:20165324 我期望的师生关系 预备作业2:20165324 学习基础与C语言学习 ...

  7. 使用Webdriver执行JS

    首先,我们使用如下方式初始化driver: WebDriver driver = new FirefoxDriver(); JavascriptExecutor jse = (JavascriptEx ...

  8. windows 2003 iis php

    我的环境 是   windows server200 ee   iis6.0  程序是php 1.一台安装好的 Windows 2003 服务器,并且已经安装了 IIS 6. 2.下载 windows ...

  9. 图层的使用要点(CALayer)

    A,图层和路径 基本图层 CALayer 动画的主角 形状图层 CAShapeLayer 绘制不规则图形 渐变图层 CAGradientLayer 颜色渐变.阴影 复制图层 CAReplicatorL ...

  10. mac 安装Sequel Pro

    安装命令如下 Install the App Press Command+Space and type Terminal and press enter/return key. Run in Term ...