冒泡法的算法最佳情况下的时间复杂度为什么是O(n)
我在许多书本上看到冒泡排序的最佳时间复杂度是O(n),即是在序列本来就是正序的情况下。
但我一直不明白这是怎么算出来的,因此通过阅读《算法导论-第2版》的2.2节,使用对插入排序最佳时间复杂度推算的方法,来计算冒泡排序的复杂度。
1. 《算法导论》2.2中对插入排序最佳时间复杂度的推算

在最好情况下,6和7总不被执行,5每次只被执行1次。因此,

时间复杂度为O(n)
2. 冒泡排序的时间复杂度
2.1 排序代码

public void bubbleSort(int arr[]) {
for(int i = 0, len = arr.length; i < len - 1; i++) {
for(int j = 0; j < len - i - 1; j++) {
if(arr[j + 1] < arr[j])
swap(arr, j, j + 1);
}
}
}

2.2 最佳情况
序列原本就是正序
2.3 最佳情况时间复杂度推算
| 语句 | cost | times |
|
i = 0, len = arr.length |
c1 | 1 |
| i < len - 1 | c2 | n |
| i++ | c3 | n - 1 |
| j = 0 | c4 | n - 1 |
| j < len - i - 1 | c5 | t(i=0) + t(i=1) + ... + t(i = n-2) |
| j++ | c6 | t2(i=0) + t2(i=1) + ... + t2(i = n-2) |
| arr[j + 1] < arr[j] | c7 | t3(i=0) + t3(i=1) + ... + t3(i = n-2) |
| swap(arr, j, j + 1) | c8 | t4(i=0) + t4(i=1) + ... + t4(i = n-2) |
T(n) = c1 + c2n + c3(n - 1) + c4(n - 1) + c5[t1(i=0) + t1(i=1) + ... + t1(i = n-2)] + c6[t2(i=0) + t2(i=1) + ... + t2(i = n-2)] + c7[t3(i=0) + t3(i=1) + ... + t3(i = n-2)] + c8[t4(i=0) + t4(i=1) + ... + t4(i = n-2)];
当序列原本就是正序时,8从不被执行。因此
T(n) = c1 + c2n + c3(n - 1) + c4(n - 1) + c5[t1(i=0) + t1(i=1) + ... + t1(i = n-2)] + c6[t2(i=0) + t2(i=1) + ... + t2(i = n-2)] + c7[t3(i=0) + t3(i=1) + ... + t3(i = n-2)];
此时的时间复杂度应为O(n^2)。
可是网上和许多书上都写道是O(n),不知是否有人能帮我解答一下呢?
2.4 在Stackoverflow上问到答案了。
我原本的代码的时间复杂度确实应该是O(n^2),但算法可以改进,使最佳情况时为O(n)。改进后的代码为:

public void bubbleSort(int arr[]) {
boolean didSwap;
for(int i = 0, len = arr.length; i < len - 1; i++) {
didSwap = false;
for(int j = 0; j < len - i - 1; j++) {
if(arr[j + 1] < arr[j]) {
swap(arr, j, j + 1);
didSwap = true;
}
}
if(didSwap == false)
return;
}
}

冒泡法的算法最佳情况下的时间复杂度为什么是O(n)的更多相关文章
- master公式 ------ 求递归情况下的时间复杂度
剖析递归行为和递归行为时间复杂度的估算一个递归行为的例子T(N) = a*T(N/b) + O(N^d)1) log(b,a) > d -> 复杂度为O(N^log(b,a))2) log ...
- 算法最坏,平均和最佳情况(Worst, Average and Best Cases)-------geeksforgeeks 翻译
最坏,平均和最佳运行时间(Worst, Average and Best Cases) 在上一篇文章中,我们讨论到了渐进分析可以解决分析算法的问题,那么在这一篇中,我们用线性搜索来举例说明一下如何用渐 ...
- C程序数组算法 — 冒泡法排序【前冒 || 后冒】
第一种写法(前冒泡): /* C程序数组算法 - 冒泡法排序 * 此例子按照 大 -> 小 排序 * 原理:两两相比较,然后进行大小对调 * 比较次数: n^2 次 * 说明:冒泡排序是相对稳定 ...
- ruby冒泡算法删除店铺下的重复评论
Shop.each do |shop| if !shop.comments.blank? n = shop.comments.length for i in 0..n-1 for j in i+1.. ...
- MySQL分页优化中的“INNER JOIN方式优化分页算法”到底在什么情况下会生效?
本文出处:http://www.cnblogs.com/wy123/p/7003157.html 最近无意间看到一个MySQL分页优化的测试案例,并没有非常具体地说明测试场景的情况下,给出了一种经典的 ...
- [算法]体积不小于V的情况下的最小价值(0-1背包)
题目 0-1背包问题,问要求体积不小于V的情况下的最小价值是多少. 相关 转移方程很容易想,初始化的处理还不够熟练,可能还可以更简明. 使用一维dp数组. 代码 import java.util.Sc ...
- 冒泡排序最佳情况的时间复杂度,为什么是O(n)
冒泡排序最佳情况的时间复杂度,为什么是O(n) 我在许多书本上看到冒泡排序的最佳时间复杂度是O(n),即是在序列本来就是正序的情况下. 但我一直不明白这是怎么算出来的,因此通过阅读<算法导论-第 ...
- Java温故而知新-冒泡法排序
冒泡法排序是各种初学者在学习数组与循环结构时都会练习的一种简单排序算法. 冒泡法的精髓在于比较相邻的两个元素,较大的元素会不断的排到队伍后面去,就像水里的泡泡一样不断向上跑. 想像一下倒在一个透明玻璃 ...
- "二分法"-"折半法"-查找算法-之通俗易懂,图文+代码详解-java编程
转自http://blog.csdn.net/nzfxx/article/details/51615439 1.特点及概念介绍 下面给大家讲解一下"二分法查找"这个java基础查找 ...
随机推荐
- 洛谷 P2123 皇后游戏 解题报告
P2123 皇后游戏 题意: 给定\(T\)组长为\(n\)的\(A\),\(B\)数组和\(C\)的计算方法,求一种排列方法,使最大的\(C\)最小化. 数据范围: \(1 \le T \le 10 ...
- Hive(六)hive执行过程实例分析与hive优化策略
一.Hive 执行过程实例分析 1.join 对于 join 操作:SELECT pv.pageid, u.age FROM page_view pv JOIN user u ON (pv.useri ...
- bzoj2089&2090: [Poi2010]Monotonicity
双倍经验一眼题... f[i][1/2]表示以i结尾,当前符号应该是</>的最长上升子序列, 用BIT优化转移就好 =的话就不用说了吧= = #include<iostream> ...
- selenium - webdriver - 定位一组元素
八种方法: find_elements_by_id() find_elements_by_name() find_elements_by_class_name() find_elements_by_t ...
- HDU 4584 splay
Shaolin Time Limit: 3000/1000 MS (Java/Others) Memory Limit: 65535/32768 K (Java/Others)Total Sub ...
- UVA11426 GCD - Extreme (II) (欧拉函数/莫比乌斯反演)
UVA11426 GCD - Extreme (II) 题目描述 PDF 输入输出格式 输入格式: 输出格式: 输入输出样例 输入样例#1: 10 100 200000 0 输出样例#1: 67 13 ...
- Adreno GPU Profiler工具使用总结
Adreno Profiler介绍 Adreno Profiler 是高通公司开发的一款针对运行在高通骁龙处理器上用于图形和GPGPU技术应用的性能分析和帧调试工具.工具本质上是一个OpenGL ES ...
- 基于javaWeb阶段下的Cookie和Session总结
1. 会话技术 就是用户在使用浏览器浏览界面的时候,去访问多个页面后一次性关闭浏览器,这个过程叫会话,学习会话技术就是在客户端与服务器进行交互的时候为了能更好的保存数据.在java中会话技术只有C ...
- 分块+lazy 或者 线段树+lazy Codeforces Round #254 (Div. 2) E
E. DZY Loves Colors time limit per test 2 seconds memory limit per test 256 megabytes input standard ...
- 面向对象 ( OO ) 的程序设计——继承
本文地址:http://www.cnblogs.com/veinyin/p/7608282.html 仅支持实现继承,且主要依靠原型链来实现,不过一般会混合构造函数一起实现继承 1 原型链 继承使用 ...