冒泡法的算法最佳情况下的时间复杂度为什么是O(n)
我在许多书本上看到冒泡排序的最佳时间复杂度是O(n),即是在序列本来就是正序的情况下。
但我一直不明白这是怎么算出来的,因此通过阅读《算法导论-第2版》的2.2节,使用对插入排序最佳时间复杂度推算的方法,来计算冒泡排序的复杂度。
1. 《算法导论》2.2中对插入排序最佳时间复杂度的推算
在最好情况下,6和7总不被执行,5每次只被执行1次。因此,
时间复杂度为O(n)
2. 冒泡排序的时间复杂度
2.1 排序代码

public void bubbleSort(int arr[]) {
for(int i = 0, len = arr.length; i < len - 1; i++) {
for(int j = 0; j < len - i - 1; j++) {
if(arr[j + 1] < arr[j])
swap(arr, j, j + 1);
}
}
}

2.2 最佳情况
序列原本就是正序
2.3 最佳情况时间复杂度推算
语句 | cost | times |
i = 0, len = arr.length |
c1 | 1 |
i < len - 1 | c2 | n |
i++ | c3 | n - 1 |
j = 0 | c4 | n - 1 |
j < len - i - 1 | c5 | t(i=0) + t(i=1) + ... + t(i = n-2) |
j++ | c6 | t2(i=0) + t2(i=1) + ... + t2(i = n-2) |
arr[j + 1] < arr[j] | c7 | t3(i=0) + t3(i=1) + ... + t3(i = n-2) |
swap(arr, j, j + 1) | c8 | t4(i=0) + t4(i=1) + ... + t4(i = n-2) |
T(n) = c1 + c2n + c3(n - 1) + c4(n - 1) + c5[t1(i=0) + t1(i=1) + ... + t1(i = n-2)] + c6[t2(i=0) + t2(i=1) + ... + t2(i = n-2)] + c7[t3(i=0) + t3(i=1) + ... + t3(i = n-2)] + c8[t4(i=0) + t4(i=1) + ... + t4(i = n-2)];
当序列原本就是正序时,8从不被执行。因此
T(n) = c1 + c2n + c3(n - 1) + c4(n - 1) + c5[t1(i=0) + t1(i=1) + ... + t1(i = n-2)] + c6[t2(i=0) + t2(i=1) + ... + t2(i = n-2)] + c7[t3(i=0) + t3(i=1) + ... + t3(i = n-2)];
此时的时间复杂度应为O(n^2)。
可是网上和许多书上都写道是O(n),不知是否有人能帮我解答一下呢?
2.4 在Stackoverflow上问到答案了。
我原本的代码的时间复杂度确实应该是O(n^2),但算法可以改进,使最佳情况时为O(n)。改进后的代码为:

public void bubbleSort(int arr[]) {
boolean didSwap;
for(int i = 0, len = arr.length; i < len - 1; i++) {
didSwap = false;
for(int j = 0; j < len - i - 1; j++) {
if(arr[j + 1] < arr[j]) {
swap(arr, j, j + 1);
didSwap = true;
}
}
if(didSwap == false)
return;
}
}

冒泡法的算法最佳情况下的时间复杂度为什么是O(n)的更多相关文章
- master公式 ------ 求递归情况下的时间复杂度
剖析递归行为和递归行为时间复杂度的估算一个递归行为的例子T(N) = a*T(N/b) + O(N^d)1) log(b,a) > d -> 复杂度为O(N^log(b,a))2) log ...
- 算法最坏,平均和最佳情况(Worst, Average and Best Cases)-------geeksforgeeks 翻译
最坏,平均和最佳运行时间(Worst, Average and Best Cases) 在上一篇文章中,我们讨论到了渐进分析可以解决分析算法的问题,那么在这一篇中,我们用线性搜索来举例说明一下如何用渐 ...
- C程序数组算法 — 冒泡法排序【前冒 || 后冒】
第一种写法(前冒泡): /* C程序数组算法 - 冒泡法排序 * 此例子按照 大 -> 小 排序 * 原理:两两相比较,然后进行大小对调 * 比较次数: n^2 次 * 说明:冒泡排序是相对稳定 ...
- ruby冒泡算法删除店铺下的重复评论
Shop.each do |shop| if !shop.comments.blank? n = shop.comments.length for i in 0..n-1 for j in i+1.. ...
- MySQL分页优化中的“INNER JOIN方式优化分页算法”到底在什么情况下会生效?
本文出处:http://www.cnblogs.com/wy123/p/7003157.html 最近无意间看到一个MySQL分页优化的测试案例,并没有非常具体地说明测试场景的情况下,给出了一种经典的 ...
- [算法]体积不小于V的情况下的最小价值(0-1背包)
题目 0-1背包问题,问要求体积不小于V的情况下的最小价值是多少. 相关 转移方程很容易想,初始化的处理还不够熟练,可能还可以更简明. 使用一维dp数组. 代码 import java.util.Sc ...
- 冒泡排序最佳情况的时间复杂度,为什么是O(n)
冒泡排序最佳情况的时间复杂度,为什么是O(n) 我在许多书本上看到冒泡排序的最佳时间复杂度是O(n),即是在序列本来就是正序的情况下. 但我一直不明白这是怎么算出来的,因此通过阅读<算法导论-第 ...
- Java温故而知新-冒泡法排序
冒泡法排序是各种初学者在学习数组与循环结构时都会练习的一种简单排序算法. 冒泡法的精髓在于比较相邻的两个元素,较大的元素会不断的排到队伍后面去,就像水里的泡泡一样不断向上跑. 想像一下倒在一个透明玻璃 ...
- "二分法"-"折半法"-查找算法-之通俗易懂,图文+代码详解-java编程
转自http://blog.csdn.net/nzfxx/article/details/51615439 1.特点及概念介绍 下面给大家讲解一下"二分法查找"这个java基础查找 ...
随机推荐
- 【noip2018】【luogu5024】保卫王国
题目描述 Z 国有nn座城市,n - 1n−1条双向道路,每条双向道路连接两座城市,且任意两座城市 都能通过若干条道路相互到达. Z 国的国防部长小 Z 要在城市中驻扎军队.驻扎军队需要满足如下几个条 ...
- Linux基础------文件打包解包---tar命令,文件压缩解压---命令gzip,vim编辑器创建和编辑正文件,磁盘分区/格式化,软/硬链接
作业一:1) 将用户信息数据库文件和组信息数据库文件纵向合并为一个文件/1.txt(覆盖) cat /etc/passwd /etc/group > /1.txt2) 将用户信息数据库文件和用户 ...
- 【题解】Popping Balls AtCoder Code Festival 2017 qual B E 组合计数
蒟蒻__stdcall终于更新博客辣~ 一下午+一晚上=一道计数题QAQ 为什么计数题都这么玄学啊QAQ Prelude 题目链接:这里是传送门= ̄ω ̄= 下面我将分几个步骤讲一下这个题的做法,大家不 ...
- OpenCV---模板匹配matchTemplate
作用有局限性,必须在指定的环境下,才能匹配成功,是受到很多因素的影响,所以有一定的适应性 模板匹配是一种最原始.最基本的模式识别方法,研究某一特定对象物的图案位于图像的什么地方,进而识别对象物,这就是 ...
- Asp.net mvc 大文件上传 断点续传 进度条
概述 项目中需要一个上传200M-500M的文件大小的功能,需要断点续传.上传性能稳定.突破asp.net上传限制.一开始看到51CTO上的这篇文章,此方法确实很不错,能够稳定的上传大文件,http: ...
- CSS盒子知识
此随笔写于学习完CSS盒子之后,所遇到的问题和感悟记录. 1.IE盒子: IE盒子的特性:对于IE浏览器来说width不是内容宽度.而是内容+外边距+边框的内容总和. 也就是说当盒子增加10px;那么 ...
- CS48 D BIT
统计一个点对应的和它严格右下方的点,点对数量.由于数据规模很大,不能直接上二维的前缀和,先排一维序,然后用BIT维护前缀和即可. /** @Date : 2017-09-14 20:17:30 * @ ...
- 【BZOJ】1485: [HNOI2009]有趣的数列
[算法]Catalan数 [题解] 学了卡特兰数就会啦>_<! 因为奇偶各自递增,所以确定了奇偶各自的数字后排列唯一. 那么就是给2n个数分奇偶了,是不是有点像入栈出栈序呢. 将做偶数标为 ...
- 【CodeForces】913 F. Strongly Connected Tournament 概率和期望DP
[题目]F. Strongly Connected Tournament [题意]给定n个点(游戏者),每轮游戏进行下列操作: 1.每对游戏者i和j(i<j)进行一场游戏,有p的概率i赢j(反之 ...
- Amcharts 柱状图和线形图
最近需要学习 Amcharts ,他的图表功能确实很强大.但是网上搜索到的教程很少,开始学起的确有点不方便.于是我决定把我学习的觉得好的途径,放到博客上. 下面的代码可以直接复制,但是文件要从官网上下 ...