3585: mex

Time Limit: 20 Sec  Memory Limit: 128 MB
Submit: 918  Solved: 481
[Submit][Status][Discuss]

Description

  有一个长度为n的数组{a1,a2,...,an}。m次询问,每次询问一个区间内最小没有出现过的自然数。

Input

  第一行n,m。
  第二行为n个数。
  从第三行开始,每行一个询问l,r。

Output

  一行一个数,表示每个询问的答案。

Sample Input

5 5
2 1 0 2 1
3 3
2 3
2 4
1 2
3 5

Sample Output

1
2
3
0
3

HINT

数据规模和约定

  对于100%的数据:

  1<=n,m<=200000

  0<=ai<=109

  1<=l<=r<=n

  对于30%的数据:

  1<=n,m<=1000

Source

http://www.lydsy.com/JudgeOnline/problem.php?id=3585

思路:

其实这题的思路和bzoj 3339完全就一样啊,连离散化都不需要。->我的bzoj3339:http://www.cnblogs.com/heimao5027/p/6668367.html

因为对于n个数字,他的mex一定是<=n的,所以就算a[i]=1e9,那么我们就不要放到mex函数里面就好了,然后直接令next[i]=n+1即可,并不需要离散化

于是就这么简单的修改一下3339的代码,一下子就又过了= =

//看看会不会爆int!数组会不会少了一维!
//取物问题一定要小心先手胜利的条件
#include <bits/stdc++.h>
using namespace std;
#pragma comment(linker,"/STACK:102400000,102400000")
#define LL long long
#define ALL(a) a.begin(), a.end()
#define pb push_back
#define mk make_pair
#define fi first
#define se second
#define haha printf("haha\n")
const int maxn = + ;
vector<pair<int, int> > ve[maxn];
int tree[maxn << ], lazy[maxn << ];
int n, q;
int a[maxn], mex[maxn];
bool vis[maxn];
int nxt[maxn], pos[maxn]; void build_tree(int l, int r, int o){
lazy[o] = -;
if (l == r){
tree[o] = mex[l]; return ;
}
int mid = (l + r) / ;
build_tree(l, mid, o << );
build_tree(mid + , r, o << | );
tree[o] = min(tree[o << ], tree[o << | ]);
} void push_down(int o){
int lb = o << , rb = o << | ;
if (lazy[lb] == - || lazy[lb] > lazy[o]){
lazy[lb] = lazy[o];
tree[lb] = min(tree[lb], lazy[lb]);
}
if (lazy[rb] == - || lazy[rb] > lazy[o]){
lazy[rb] = lazy[o];
tree[rb] = min(tree[rb], lazy[rb]);
}
tree[o] = -;
} int query(int x, int l, int r, int o){
if (x == l && x == r){
return tree[o];
}
if (lazy[o] != -) push_down(o);
int mid = (l + r) / ;
if (x <= mid) return query(x, l, mid, o << );
if (x > mid) return query(x, mid + , r, o << | );
} void update(int ql, int qr, int l, int r, int o, int val){
if (ql <= l && qr >= r){
if (lazy[o] == -) lazy[o] = val;
lazy[o] = min(lazy[o], val);
tree[o] = min(lazy[o], tree[o]);
return ;
}
if (lazy[o] != -)push_down(o);
int mid = (l + r) / ;
if (ql <= mid) update(ql, qr, l, mid, o << , val);
if (qr > mid) update(ql, qr, mid + , r, o << | , val);
tree[o] = min(tree[o << ], tree[o << | ]);
}
int ans[maxn];
void solve(){
build_tree(, n, );
for (int i = ; i <= n; i++){
for (int j = ; j < ve[i].size(); j++){
int pos = ve[i][j].fi, id = ve[i][j].se;
ans[id] = query(pos, , n, );
}
int lb = i + , rb = nxt[i] - ;
if (lb <= rb) update(lb, rb, , n, , a[i]);
}
for (int i = ; i <= q; i++){
printf("%d\n", ans[i]);
}
} int main(){
cin >> n >> q;
for (int i = ; i <= n; i++) {
scanf("%d", a + i);
if (a[i] <= n + ) vis[a[i]] = true;
mex[i] = mex[i - ];
while (vis[mex[i]]) mex[i]++;
pos[i] = n + ;
}
for (int i = ; i <= n; i++) pos[i] = n + ;
for (int i = n; i >= ; i--){
if (a[i] >= n + ){
nxt[i] = n + ; continue;
}
nxt[i] = pos[a[i]];
pos[a[i]] = i;
}
for (int i = ; i <= q; i++){
int l, r; scanf("%d%d", &l, &r);
ve[l].pb(mk(r, i));
}
solve();
return ;
}

维护后面的position + 离线 + 线段树 bzoj 3585的更多相关文章

  1. 维护后面的position sg函数概念,离线+线段 bzoj 3339

    3339: Rmq Problem Time Limit: 20 Sec  Memory Limit: 128 MBSubmit: 1160  Solved: 596[Submit][Status][ ...

  2. BZOJ 3626 [LNOI2014]LCA 树剖+(离线+线段树 // 在线+主席树)

    BZOJ 4012 [HNOI2015]开店 的弱化版,离线了,而且没有边权(长度). 两种做法 1 树剖+离线+线段树 这道题求的是一个点zzz与[l,r][l,r][l,r]内所有点的lcalca ...

  3. HDU 5700 区间交 离线线段树

    区间交 题目连接: http://acm.hdu.edu.cn/showproblem.php?pid=5700 Description 小A有一个含有n个非负整数的数列与m个区间.每个区间可以表示为 ...

  4. hdu 4288 离线线段树+间隔求和

    Coder Time Limit: 20000/10000 MS (Java/Others)    Memory Limit: 32768/32768 K (Java/Others) Total Su ...

  5. bzoj2333 离线 + 线段树

    https://www.lydsy.com/JudgeOnline/problem.php?id=2333 有N个节点,标号从1到N,这N个节点一开始相互不连通.第i个节点的初始权值为a[i],接下来 ...

  6. 【BZOJ 3443】 3443: 装备合成 (离线+线段树)

    3443: 装备合成 Time Limit: 15 Sec  Memory Limit: 128 MBSubmit: 63  Solved: 31 Description [背景]     lll69 ...

  7. 【BZOJ 2333 】[SCOI2011]棘手的操作(离线+线段树)

    2333: [SCOI2011]棘手的操作 Description 有N个节点,标号从1到N,这N个节点一开始相互不连通.第i个节点的初始权值为a[i],接下来有如下一些操作: U x y: 加一条边 ...

  8. LOJ 121 「离线可过」动态图连通性——LCT维护删除时间最大生成树 / 线段树分治

    题目:https://loj.ac/problem/121 离线,LCT维护删除时间最大生成树即可.注意没有被删的边的删除时间是 m+1 . 回收删掉的边的节点的话,空间就可以只开 n*2 了. #i ...

  9. 【BZOJ 2333 】[SCOI2011]棘手的操作(离线+线段树|可并堆-左偏树)

    2333: [SCOI2011]棘手的操作 Description 有N个节点,标号从1到N,这N个节点一开始相互不连通.第i个节点的初始权值为a[i],接下来有如下一些操作: U x y: 加一条边 ...

随机推荐

  1. 基于spec探路者团队贪吃蛇作品的评论

    1 运动功能 由以上两图贪吃蛇的位置不同可知,运动功能实现.并且我能够通过使用键盘上的上下左右方位键控制蛇的移动方向,蛇在控制的方向上进行直线前进. 2 吃食物功能 以上两图可知吃食物功能实现.当界面 ...

  2. 20172321 2018-2019《Java软件结构与数据结构》第三周学习总结

    教材学习内容总结 第五章 5.1概述 队列是一种线性集合,其元素从一端加入,从另一端删除:队列的处理方式是先进先出(First in First out). 与栈的比较(LIFO) 栈是一端操作,先进 ...

  3. Python:三元运算

    result=值1 if 条件 else 值2 如果条件为真,result=值1 如果条件为假,result=值2 例子: a,b,c=1,3,5 d=a if a>b else c print ...

  4. jQuery之过滤选择器

    在原有选择器匹配的元素中进一步进行过滤的选择器 * 基本 * 内容 * 可见性 * 属性 需求 1. 选择第一个div 2. 选择最后一个class为box的元素 3. 选择所有class属性不为bo ...

  5. php关于static和self的一点理解

    在使用和学习laravel的过程中,总会看到类似与static::methods或者static::variable的使用方式,对此感觉到疑惑和不解,后来查阅了相关的资料才知道他是php5.3之后新加 ...

  6. 基于Git制作电子书 GitBook

    GitBook 详细介绍 GitBook 是一个基于 Node.js 的命令行工具,可使用 Github/Git 和 Markdown 来制作精美的电子书,GitBook 并非关于 Git 的教程. ...

  7. Spring Cloud构建微服务架构

    Dalston版本 由于Brixton和Camden版本的教程已经停止更新,所以笔者计划在2017年上半年完成Dalston版本的教程编写(原计划完成Camden版本教程,但由于写了两篇Dalston ...

  8. bootstrap 中的静态模式的控制按钮上的一个坑

    在使用modal时发现,代码:<button class="btn btn-danger" data-toggle="modal" data-target ...

  9. Period UVALive - 3026(next数组)

    题意: 给出一个长度不超过1000000的字符串S, 对于该字符串的所有前缀求其周期, 如果周期K >= 2输出起始位置是第几个字符和其周期K 解析: 先求next数组 对于每一个位置如果i % ...

  10. 【刷题】BZOJ 5248 [2018多省省队联测]一双木棋

    Description 菲菲和牛牛在一块n行m列的棋盘上下棋,菲菲执黑棋先手,牛牛执白棋后手.棋局开始时,棋盘上没有任何棋子, 两人轮流在格子上落子,直到填满棋盘时结束.落子的规则是:一个格子可以落子 ...