求$$2^{2^{2^{2^{…}}}} mod n$$的值,其中n有1e7。

老实说这题挺有趣的,关键是怎么化掉指数,由于是取模意义下的无限个指数,所以使用欧拉定理一定是可以把指数变为不大于$\varphi(n)$的,但是我们连上一层指数的值都不知道,怎么化阿...

考虑同余定理,把n变为$n=2^k·s$的形式,然后$2^k$先提取出来,这样每向一层模数会减少,最后到1这样最后一层可以得到0的值了,回溯时计算完一层的指数时再把$2^k$乘回去就好了

/** @Date    : 2017-09-11 21:22:36
* @FileName: bzoj 3884 欧拉降幂.cpp
* @Platform: Windows
* @Author : Lweleth (SoungEarlf@gmail.com)
* @Link : https://github.com/
* @Version : $Id$
*/
#include <bits/stdc++.h>
#define LL long long
#define PII pair<int ,int>
#define MP(x, y) make_pair((x),(y))
#define fi first
#define se second
#define PB(x) push_back((x))
#define MMG(x) memset((x), -1,sizeof(x))
#define MMF(x) memset((x),0,sizeof(x))
#define MMI(x) memset((x), INF, sizeof(x))
using namespace std; const int INF = 0x3f3f3f3f;
const int N = 1e7+20;
const double eps = 1e-8; LL fpow(LL a, LL n, LL mod)
{
LL res = 1;
while(n)
{
if(n & 1)
res = (res * a % mod + mod) %mod;
a = (a * a % mod + mod ) % mod;
n >>= 1;
}
return res;
} int pri[N];
int phi[N];
int c = 0;
void prime()
{
MMF(phi);
phi[1] = 1;
for(int i = 2; i < N; i++)
{
if(!phi[i])
pri[c++] = i, phi[i] = i - 1;
for(int j = 0; j < c && i * pri[j] < N; j++)
{
phi[i * pri[j]] = 1;
if(i % pri[j] == 0)//是倍数i=kp, phi(kpp)=kpp*[phi(kp)/kp]=p*phi(kp)
{
phi[i * pri[j]] = phi[i] * pri[j];
break;
}
else //积性函数性质 (i, p) = 1, phi(ip)=phi(i)*phi(p)
phi[i * pri[j]] = phi[i] * (pri[j] - 1);
}
}
} int get_phi(int x)
{
int phi = x;
for(int i = 2; i * i <= x; i++)
{
if(x % i == 0)
{
while(x % i==0)
x /= i;
phi = phi / i * (i - 1);
}
}
if(x > 2)
phi = phi / x * (x - 1);
return phi;
} int dfs(int p)
{
if(p == 1)
return 0;
int k = 0;
while(p % 2 == 0)
p>>=1, k++;
int s = p;
int phis = get_phi(s);/*phi[s];*/
int nxe = dfs(phis);//模数向上递归
nxe = (nxe - k % phis + phis) % phis;//欧拉降幂
nxe = fpow(2, nxe, s) % s;
return nxe << k;
}
int main()
{
int T;
//prime();
cin >> T;
while(T--)
{
int mod;
scanf("%d", &mod);
printf("%d\n", dfs(mod));
}
return 0;
}

bzoj 3884 欧拉定理的更多相关文章

  1. BZOJ 3884 欧拉定理 无穷幂取模

    详见PoPoQQQ的博客.. #include <iostream> #include <cstring> #include <cstdio> #include & ...

  2. [BZOJ 3884][欧拉定理]上帝与集合的正确使用方法

    看看我们机房某畸形写的题解:http://blog.csdn.net/sinat_27410769/article/details/46754209 此题为popoQQQ神犇所出,在此orz #inc ...

  3. BZOJ 3884 拓展欧拉定理

    3884: 上帝与集合的正确用法 Time Limit: 5 Sec  Memory Limit: 128 MBSubmit: 4142  Solved: 1907[Submit][Status][D ...

  4. BZOJ.3884.上帝与集合的正确用法(扩展欧拉定理)

    \(Description\) 给定p, \(Solution\) 欧拉定理:\(若(a,p)=1\),则\(a^b\equiv a^{b\%\varphi(p)}(mod\ p)\). 扩展欧拉定理 ...

  5. BZOJ 3884: 上帝与集合的正确用法 扩展欧拉定理 + 快速幂

    Code: #include<bits/stdc++.h> #define maxn 10000004 #define ll long long using namespace std; ...

  6. BZOJ 3884 上帝与集合的正确用法(扩展欧拉定理)

    Description   根据一些书上的记载,上帝的一次失败的创世经历是这样的: 第一天, 上帝创造了一个世界的基本元素,称做“元”. 第二天, 上帝创造了一个新的元素,称作“α”.“α”被定义为“ ...

  7. bzoj 3884 上帝与集合的正确用法(递归,欧拉函数)

    [题目链接] http://www.lydsy.com/JudgeOnline/problem.php?id=3884 [题意] 求2^2^2… mod p [思路] 设p=2^k * q+(1/0) ...

  8. BZOJ 3884 上帝与集合的正确用法

    Description 根据一些书上的记载,上帝的一次失败的创世经历是这样的: 第一天, 上帝创造了一个世界的基本元素,称做"元". 第二天, 上帝创造了一个新的元素,称作&quo ...

  9. BZOJ 3884: 上帝与集合的正确用法 [欧拉降幂]

    PoPoQQQ大爷太神了 只要用欧拉定理递归下去就好了.... 然而还是有些细节没考虑好: $(P,2) \neq 1$时分解$P=2^k*q$的形式,然后变成$2^k(2^{(2^{2^{...}} ...

随机推荐

  1. struts2 不返回result的做法

    有时候 比如提交一个弹框的表单 提交成功后我们只是让表单关闭并不进行页面跳转,那么action 里面就returne null, 然后result 也不用配置了 版权声明:本文为博主原创文章,未经博主 ...

  2. Floyd模板(详细操作最基础版)

    #include<cstdio> #include<iostream> using namespace std; #define MAX 500 #define INFE 1& ...

  3. 树莓派两用优盘制作(FAT32存储+EXT树莓派系统)

    版权声明:若无来源注明,Techie亮博客文章均为原创. 转载请以链接形式标明本文标题和地址: 本文标题:树莓派两用优盘制作(FAT32存储+EXT树莓派系统)     本文地址:http://tec ...

  4. js滚动异步加载数据的思路

    <body> <div style="width:200px; height:1000px; border:1px solid red;" id="to ...

  5. JDK1.8最新特性--Lambda表达式(重点)

    一个旧版本JDK简单匿名类的用例如下所示: // Java 8之前: JButton show = new JButton("Show"); show.addActionListe ...

  6. 第112天:javascript中函数预解析和执行阶段

    关于javascript中的函数:  1.预解析:把所有的函数定义提前,所有的变量声明提前,变量的赋值不提前  2.执行 :从上到下执行,但有例外(setTimeout,setInterval,aja ...

  7. luogu 1967 货车运输(最大生成树+LCA)

    题意:给出一颗n个点的图,q个询问,每次询问u到v的路径中最小的边最大是多少. 图的最大生成树有一个性质,对于该图的任意两个点,在树中他们之间路径的最小边最大. 由于这个图不一定联通,于是我们对它的联 ...

  8. MySQL5.7 初使用

    MySQL 5.7.6 发布了快一年了, 官方的说法是比起前几代有很大的安全性提升,性能报告也是比之前版本提升了 2.3倍. 性能上这么大的提升,安全上也这么大的改进,怎么能不心动呢,这几天出于好奇, ...

  9. C++函数中的那些坑

    平时写程序时,我们可能或多或少对一些用法感到朦胧,下面我对一些易困惑大家,或者易用错的地方作点介绍. 一.函数的一些注意点 1.函数返回类型不能是数组类型或函数类型,但可以是指向数组或函数的指针. 2 ...

  10. MSSQL数据库分页存储过程

    create procedure [dbo].[p_splitpage] ), , , output, output as set nocount on declare @p1 int ,,@rowc ...