LINK

题意:给出n,k,有a,b两种值,a和b间互相配对,求$a>b$的配对组数-b>a的配对组数恰好等于k的情况有多少种。

思路:粗看会想这是道容斥组合题,但关键在于如何得到每个a[i]大于b的组数。

不妨从整体去考虑,使用$f[n][j]$代表前n个中有j组$a[i]>b[i]$,很容易得到转移式$f[n][j]=f[n-1][j]+f[n-1][j-1]*(cnt[n]-(j-1))$,其中$cnt[i]$为比a[i]小的b[]个数

但是仔细思考该式子含义会发现,$f[n][j]$得到的是不小于j组满足a[i]>b[]的数,会造成大于j组数情况的重复计入

我们定义$dp[n][i]$代表选取i组恰好糖果大于药片的方案 也就是正确答案

那么实际上总情况有$dp[n][i] = f[n][i]*(n-i)! $即剩下n-i个数自由配对 有$(n-i)!$种

重复情况为任意选取大于i(i+1~n)的 并在其中无序选出i个的种类数 即 $\sum^{n}_{j=i+1}{dp[n][i]*C(j,i)}$

/** @Date    : 2017-07-17 16:15:38
* @FileName: bzoj 3622 DP + 容斥.cpp
* @Platform: Windows
* @Author : Lweleth (SoungEarlf@gmail.com)
* @Link : https://github.com/
* @Version : $Id$
*/
#include <stdio.h>
#include <iostream>
#include <string.h>
#include <algorithm>
#include <utility>
#include <vector>
#include <map>
#include <set>
#include <string>
#include <stack>
#include <queue>
#include <math.h>
//#include <bits/stdc++.h>
#define LL long long
#define PII pair<int ,int>
#define MP(x, y) make_pair((x),(y))
#define fi first
#define se second
#define PB(x) push_back((x))
#define MMG(x) memset((x), -1,sizeof(x))
#define MMF(x) memset((x),0,sizeof(x))
#define MMI(x) memset((x), INF, sizeof(x))
using namespace std; const int INF = 0x3f3f3f3f;
const int N = 1e5+20;
const double eps = 1e-8;
const LL mod = 1e9 + 9; LL a[2100];
LL b[2100];
LL dp[2100];
LL f[2100][2100];
LL fac[2100];
LL inv[2100];
LL cnt[2100];
int n, k; void init()
{
fac[0] = fac[1] = 1;
inv[0] = inv[1] = 1;
for(int i = 2; i <= 2010; i++)
{
fac[i] = fac[i - 1] * i % mod;
inv[i] = (mod - mod / i) * inv[mod % i] % mod;
}
for(int i = 2; i <= 2010; i++)
(inv[i] *= inv[i - 1]) %= mod;
} LL C(int n, int m)
{
LL ans = 0;
if(m > n)
return ans;
ans = ((fac[n] * inv[m]) % mod * inv[n - m]) % mod;
return ans;
} int main()
{
while(cin >> n >> k)
{
init();
LL m = (n + k) / 2; for(int i = 1; i <= n; i++) scanf("%lld", a + i);
for(int i = 1; i <= n; i++) scanf("%lld", b + i); sort(a + 1, a + n + 1);
sort(b + 1, b + n + 1); for(int i = 1; i <= n; i++)
{
for(int j = 1; j <= n; j++)
if(a[i] > b[j])
cnt[i] = j;
}
for(int i = 0; i <= n; i++)
{
f[i][0] = 1;
for(int j = 1; j <= i; j++)
{
f[i][j] = f[i - 1][j];
if(cnt[i] - (j - 1) > 0)
f[i][j] += f[i - 1][j - 1] * (cnt[i] - (j - 1));
f[i][j] %= mod;
}
} for(int i = n; i >= m; i--)
{
dp[i] = f[n][i] * fac[n - i] % mod;
for(int j = i + 1; j <= n; j++)
{
dp[i] = (dp[i] - dp[j] * C(j, i) % mod + mod) % mod;
}
} printf("%lld\n", dp[m]);
}
return 0;
}

bzoj 3622 DP + 容斥的更多相关文章

  1. BZOJ 2287 DP+容斥

    思路: 先处理出来f[j]表示这i个物品都可用 填满容量j的方案数 容斥一发 处理出来g[j]=g[j-w[i]] 表示i不能用的时候 填满容量j的方案数 //By SiriusRen #includ ...

  2. 【BZOJ 4665】 4665: 小w的喜糖 (DP+容斥)

    4665: 小w的喜糖 Time Limit: 10 Sec  Memory Limit: 128 MBSubmit: 94  Solved: 53 Description 废话不多说,反正小w要发喜 ...

  3. [Luogu P1450] [HAOI2008]硬币购物 背包DP+容斥

    题面 传送门:https://www.luogu.org/problemnew/show/P1450 Solution 这是一道很有意思的在背包里面做容斥的题目. 首先,我们可以很轻松地想到暴力做背包 ...

  4. [BZOJ 1042] [HAOI2008] 硬币购物 【DP + 容斥】

    题目链接:BZOJ - 1042 题目分析 首先 Orz Hzwer ,代码题解都是看的他的 blog. 这道题首先使用DP预处理,先求出,在不考虑每种硬币个数的限制的情况下,每个钱数有多少种拼凑方案 ...

  5. BZOJ.2655.calc(DP/容斥 拉格朗日插值)

    BZOJ 洛谷 待补.刚刚政治会考完来把它补上了2333.考数学去了. DP: 首先把无序化成有序,选严格递增的数,最后乘个\(n!\). 然后容易想到令\(f_{i,j}\)表示到第\(i\)个数, ...

  6. BZOJ.4559.[JLOI2016]成绩比较(DP/容斥 拉格朗日插值)

    BZOJ 洛谷 为什么已经9点了...我写了多久... 求方案数,考虑DP... \(f[i][j]\)表示到第\(i\)门课,还有\(j\)人会被碾压的方案数. 那么\[f[i][j]=\sum_{ ...

  7. BZOJ 4361 isn 容斥+dp+树状数组

    题目链接:https://www.lydsy.com/JudgeOnline/problem.php?id=4361 题意概述: 给出一个长度为N的序列A(A1,A2...AN).如果序列A不是非降的 ...

  8. bzoj 4455 [Zjoi2016]小星星 树形dp&容斥

    4455: [Zjoi2016]小星星 Time Limit: 10 Sec  Memory Limit: 512 MBSubmit: 643  Solved: 391[Submit][Status] ...

  9. BZOJ 3812 主旋律 (状压DP+容斥) + NOIP模拟赛 巨神兵(obelisk)(状压DP)

    这道题跟另一道题很像,先看看那道题吧 巨神兵(obelisk) 题面 欧贝利斯克的巨神兵很喜欢有向图,有一天他找到了一张nnn个点mmm条边的有向图.欧贝利斯克认为一个没有环的有向图是优美的,请问这张 ...

随机推荐

  1. c# 简单日志记录

    FileStream fs = new FileStream(System.AppDomain.CurrentDomain.BaseDirectory + "log.txt",Fi ...

  2. Linux 安装php扩展 swoole

    swoole是一个PHP的异步.并行.高性能网络通信引擎,使用纯C语言编写,提供了PHP语言的异步多线程服务器,异步TCP/UDP网络客户端,异步MySQL,异步Redis,数据库连接池,AsyncT ...

  3. Ubuntu命令行安装显卡驱动

    1. sudo apt-et purge nvidia* 卸载原有驱动 2. sudo add-apt-repository ppa:graphics-drivers sudo apt-get upd ...

  4. Alpha 冲刺6

    队名:日不落战队 安琪(队长) 今天完成的任务 回收站前端界面. 明天的计划 查看个人信息界面. 还剩下的任务 信息修改前端界面. 设置界面. 遇到的困难 模拟机莫名其妙就崩了,调试了很久,后在队友的 ...

  5. JNDI和JDBC

    没有JNDI的做法:程序员开发时,知道要开发访问MySQL数据库的应用,于是将一个对 MySQL JDBC 驱动程序类的引用进行了编码,并通过使用适当的 JDBC URL 连接到数据库.就像以下代码这 ...

  6. TFTP服务 简单文件传输协议)是TCP/IP协议族中的一个用来在客户机与服务器之间进行简单文件传输的协议,默认端口号为69

    (1)yum安装:tftp.tftp-server   (2)启动tftp CentOS 6 service xinetd restart chkconfig tftp on CentOS 7 sys ...

  7. Alpha阶段敏捷冲刺 DAY5

    一.举行站立式例会 1.今天我们利用晚上的时间开展了站立会议,总结了一下之前工作的问题,并且制定了明天的计划. 2.站立式会议照片 二.团队报告 1.昨日已完成的工作 (1)改进了程序算法 (2)优化 ...

  8. 设计模式--Restful笔记(一)

    一.REST基础概念 首先REST是 Representational State Transfer 的缩写,如果一个架构符合REST原则,它就是RESTful架构. 在REST中的一切都被认为是一种 ...

  9. HDU 2162 Add ‘em

    http://acm.hdu.edu.cn/showproblem.php?pid=2162 Problem Description Write a program to determine the ...

  10. jsonFormater之应用

        html代码: <!DOCTYPE html> <html> <head> <meta charset="utf-8" /> ...