POJ - 3264 Balanced Lineup (RMQ问题求区间最值)
RMQ (Range Minimum/Maximum Query)问题是指:对于长度为n的数列A,回答若干询问RMQ(A,i,j)(i,j<=n),返回数列A中下标在i,j里的最小(大)值,也就是说。RMQ问题是指求区间最值的问题。
Time Limit: 5000MS | Memory Limit: 65536KB | 64bit IO Format: %I64d & %I64u |
Description
For the daily milking, Farmer John's N cows (1 ≤ N ≤ 50,000) always line up in the same order. One day Farmer John decides to organize a game of Ultimate Frisbee with some of the cows. To keep things simple, he will take a contiguous range
of cows from the milking lineup to play the game. However, for all the cows to have fun they should not differ too much in height.
Farmer John has made a list of Q (1 ≤ Q ≤ 200,000) potential groups of cows and their heights (1 ≤ height ≤ 1,000,000). For each group, he wants your help to determine the difference in height between the shortest and the tallest
cow in the group.
Input
Lines 2.. N+1: Line i+1 contains a single integer that is the height of cow i
Lines N+2.. N+ Q+1: Two integers A and B (1 ≤ A ≤ B ≤ N), representing the range of cows from A to B inclusive.
Output
Sample Input
6 3
1
7
3
4
2
5
1 5
4 6
2 2
Sample Output
6
3
0
1.朴素(遍历): 复杂度O(n)-O(qn)。
2.线段树 :复杂度O(n)-O(qlogn)。
3.ST(Sparse Table)算法 :O(nlogn)-O(q)
说下ST算法,由于每一个查询仅仅有O(1)。在处理大量查询的时候有优势。
<1>.预处理(动态规划DP)
对A[i]数列,F[i][j] 表示从第i个数起连续2^j 中的最大值(DP的状态),能够看到,F[i][0] 表示的是A[i](DP的初始值)。
最后。状态转移方程是
F[i][j]=max(F[i][j-1],F[i+2^(j-1)][j-1])
<2>查询
若查询区间为(a。b),区间长度为b-a+1,取k=log2(b-a+1),则Max(a。b)=max(F[a][k]。F[b-2^k+1][k])。
1.ST算法
#include<iostream>
#include<algorithm>
#include<cstdio>
#include<cstring>
#include<cmath>
#define max(a,b) (a>b?a:b)
#define min(a,b) (a<b?a:b)
using namespace std; const int MAXN = 50050; int mins[MAXN][20];
int maxs[MAXN][20]; void RMQ(int n)
{
for (int j = 1; (1 << j) <= n;j++)
for (int i = 1; i + (1 << j) - 1 <= n; i++)
{
int p = (1 << (j - 1));
mins[i][j] = min(mins[i][j - 1], mins[i + p][j - 1]);
maxs[i][j] = max(maxs[i][j - 1], maxs[i + p][j - 1]);
}
} int queryMin(int l, int r)
{
int k = log((double)(r - l + 1))/log(2.0);
return min(mins[l][k], mins[r - (1 << k) + 1][k]);
} int queryMax(int l, int r)
{
int k = log((double)(r - l + 1))/log(2.0);
return max(maxs[l][k], maxs[r - (1 << k) + 1][k]);
} int main()
{
int n, q;
scanf("%d%d", &n, &q);
int num;
for (int i = 1; i <= n; i++)
{
scanf("%d", &num);
maxs[i][0] = mins[i][0] = num;
}
RMQ(n);
int a, b;
int ans;
for (int i = 0; i < q; i++)
{
scanf("%d%d", &a, &b);
ans= queryMax(a, b) - queryMin(a, b);
printf("%d\n", ans);
}
}
2.线段树
#include<iostream>
#include<cstdio>
#include<cstring>
#include<string>
#include<algorithm>
#define max(a,b) (a>b?a:b)
#define min(a,b) (a<b?a:b) using namespace std; const int MAXN = 50050; int num[MAXN]; struct node
{
int r;
int l;
int Max;
int Min;
}tree[3*MAXN]; void build(int l, int r, int i)
{
tree[i].l = l; tree[i].r = r;
if (l == r)
{
tree[i].Max = tree[i].Min = num[l];
return;
}
int m = (l + r) >> 1, ls = i << 1, rs = ls + 1;
build(l, m, ls);
build(m + 1, r, rs);
tree[i].Max = max(tree[rs].Max, tree[ls].Max);
tree[i].Min = min(tree[rs].Min, tree[ls].Min);
} int queryMax(int l, int r, int i)
{
if (tree[i].l == l&&tree[i].r == r)
return tree[i].Max;
int m = (tree[i].l + tree[i].r) >> 1, ls = i << 1, rs = ls + 1;
if (r <= m) return queryMax(l, r, ls);
else if (l > m) return queryMax(l, r, rs);
else return max(queryMax(l, m, ls), queryMax(m + 1, r, rs));
} int queryMin(int l, int r, int i)
{
if (tree[i].l == l&&tree[i].r == r)
return tree[i].Min;
int m = (tree[i].l + tree[i].r) >> 1, ls = i << 1, rs = ls + 1;
if (r <= m) return queryMin(l, r, ls);
else if (l > m) return queryMin(l, r, rs);
else return min(queryMin(l, m, ls), queryMin(m + 1, r, rs));
} int main()
{
int n, q;
scanf("%d%d", &n, &q);
for (int i = 1; i <= n; i++)
scanf("%d", &num[i]);
build(1, n, 1);
int a, b;
int ans;
for (int i = 0; i < q; i++)
{
scanf("%d%d", &a, &b);
ans = queryMax(a, b, 1) - queryMin(a, b, 1);
printf("%d\n", ans);
}
}
參考了http://blog.csdn.net/niushuai666/article/details/6624672/
POJ - 3264 Balanced Lineup (RMQ问题求区间最值)的更多相关文章
- Poj 3264 Balanced Lineup RMQ模板
题目链接: Poj 3264 Balanced Lineup 题目描述: 给出一个n个数的序列,有q个查询,每次查询区间[l, r]内的最大值与最小值的绝对值. 解题思路: 很模板的RMQ模板题,在这 ...
- poj 3264 Balanced Lineup (RMQ)
/******************************************************* 题目: Balanced Lineup(poj 3264) 链接: http://po ...
- poj 3264 Balanced Lineup【RMQ-ST查询区间最大最小值之差 +模板应用】
题目地址:http://poj.org/problem?id=3264 Sample Input 6 3 1 7 3 4 2 5 1 5 4 6 2 2 Sample Output 6 3 0分析:标 ...
- POJ 3264 Balanced Lineup 【线段树/区间最值差】
Balanced Lineup Time Limit: 5000MS Memory Limit: 65536K Total Submissions: 62103 Accepted: 29005 Cas ...
- POJ 3264 Balanced Lineup RMQ ST算法
题意:有n头牛,编号从1到n,每头牛的身高已知.现有q次询问,每次询问给出a,b两个数.要求给出编号在a与b之间牛身高的最大值与最小值之差. 思路:标准的RMQ问题. RMQ问题是求给定区间内的最值问 ...
- poj 3264 Balanced Lineup (RMQ算法 模板题)
RMQ支持操作: Query(L, R): 计算Min{a[L],a[L+1], a[R]}. 预处理时间是O(nlogn), 查询只需 O(1). RMQ问题 用于求给定区间内的最大值/最小值问题 ...
- POJ 3264 Balanced Lineup -- RMQ或线段树
一段区间的最值问题,用线段树或RMQ皆可.两种代码都贴上:又是空间换时间.. RMQ 解法:(8168KB 1625ms) #include <iostream> #include < ...
- POJ 3264 Balanced Lineup 【ST表 静态RMQ】
传送门:http://poj.org/problem?id=3264 Balanced Lineup Time Limit: 5000MS Memory Limit: 65536K Total S ...
- POJ 3264 Balanced Lineup【线段树区间查询求最大值和最小值】
Balanced Lineup Time Limit: 5000MS Memory Limit: 65536K Total Submissions: 53703 Accepted: 25237 ...
随机推荐
- Andorid之Annotation框架初使用(一)
1. 设置Activity的布局 @EActivity(R.layout.main) public class MyActivity extends Activity {} 注: 此时在Android ...
- Flume目录
1. Flume的安装配置 2. flume和kafka整合(转) 3. Flume NG 配置详解(转) 4. Flume-NG一些注意事项(转) 5. FLume监控文件夹,将数据发送给Kafka ...
- Eclipse中设置背景颜色与字体大小和xml文件中字体大小调整
Eclipse中代码编辑背景颜色修改: 代码编辑界面默认颜色为白色.对于长期使用电脑编程的人来说,白色很刺激我们的眼睛,所以改变workspace的背景色,可以使眼睛舒服一些.设置方法如下: 1.打开 ...
- 在JavaScript文件中读取properties文件的方法
假设有JavaScript文件叫做:readproperties.js,这个文件需要读取config.properties这个配置文件,步骤如下: 1. 下载插件jquery.i18n.proper ...
- java学习笔记7--抽象类与抽象方法
接着前面的学习: java学习笔记6--类的继承.Object类 java学习笔记5--类的方法 java学习笔记4--类与对象的基本概念(2) java学习笔记3--类与对象的基本概念(1) jav ...
- Hibernate 延迟载入
一.延迟载入定义 延迟载入,也叫懒载入,它是Hibernate为提高程序运行效率而提供的一种机制,即当仅仅有真正使用该对象的数据时才会创建. 说白了,所谓的延迟载入不是 ...
- Android -- ListView与Adapter
ListView在Android中有着很重要的作用.Android开发中ListView是比较常用的组件,它以列表的形式展示具体内容,并且能够根据数据的长度自适应显示. 背景 ...
- 再谈Cognos利用FM模型来做同比环比
很早之前已经讲过 <Cognos利用DMR模型开发同比环比>这篇文章里说的是不利用过滤器,而是采用 except (lastPeriods (-9000,[订单数据分析].[日期维度].[ ...
- Hidden Markov Model Toolbox for Matlab
官网:http://www.cs.ubc.ca/~murphyk/Software/HMM/hmm.html Download Click here. Unziping creates a direc ...
- Android中的一些小技巧
这个是App判断是pad还是手机的代码: public boolean isTabletDevice() { TelephonyManager telephony = (TelephonyManage ...