欢迎访问我的新博客:http://www.milkcu.com/blog/

原文地址:http://www.milkcu.com/blog/archives/uva10042.html

原创:Smith Numbers - PC110706

作者:MilkCu

题目描述

Smith Numbers

 

While skimming his phone directory in 1982, mathematician Albert Wilansky noticed that the telephone number of his brother-in-law H. Smith had the following peculiar property: The sum of the digits of that number was equal to the sum of the
digits of the prime factors of that number. Got it? Smith's telephone number was 493-7775. This number can be written as the product of its prime factors in the following way:

4937775 = 3 . 5 . 5 . 65837

The sum of all digits of the telephone number is 4 + 9 + 3 + 7 + 7 + 7 + 5 = 42, and the sum of the digits of its prime factors is equally 3
+ 5 + 5 + 6 + 5 + 8 + 3 + 7 = 42. Wilansky named this type of number after his brother-in-law: the Smith numbers.

As this property is true for every prime number, Wilansky excluded them from the definition. Other Smith numbers include 6,036 and 9,985.

Wilansky was not able to find a Smith number which was larger than the telephone number of his brother-in-law. Can you help him out?

Input

The input consists of several test cases, the number of which you are given in the first line of the input. Each test case consists of one line containing a single positive integer smaller than 109.

Output

For every input value n, compute the smallest Smith number
which is larger than n and print it on a single line. You can assume that such a number exists.

Sample Input

1
4937774

Sample Output

4937775

解题思路

如何找出素因子呢?枚举法。



那每个整数的素因子是否唯一呢?

由算术基本定理可得,每个整数表示成素数乘积的方式只有一种。



Smith数肯定是合数,且满足各个数字之和等于所有素因子的每个数字之和。

注意,素因子中可能出现两个相同的数字。



那样就可以按部就班的做,从给定的数开始遍历,找到满足的数就退出循环。



为什么会超时呢?构建一个装有素数的容器。



为什么答案错误呢?

注意:若临时变量tc不为1,则说明它超出了sqrt(1e9)的范围,但它是质数,仍是该整数的质因子。

代码实现

#include <iostream>
#include <cmath>
#include <vector>
#include <algorithm>
using namespace std;
vector<int> v;
int isPrime(int x) {
if(x == 2) {
return 1;
}
int s = ceil(sqrt(x));
for(int i = 2; i <= s; i++) {
if(x % i == 0) {
return 0;
}
}
return 1;
}
void getPrime(void) {
int s = ceil(sqrt(1e9));
for(int i = 2; i <= s; i++) {
if(isPrime(i)) {
v.push_back(i);
}
}
}
int calc(int x) {
int sum = 0;
while(x) {
sum += x % 10;
x /= 10;
}
return sum;
}
int smith(int n) {
int current = n + 1;
while(1) {
//if(find(v.begin(), v.end(), current) != v.end()) {
if(isPrime(current)) {
//zhishu
current++;
continue;
}
int csum = calc(current);
int tc = current;
int tsum = 0;
for(int i = 0; i < v.size(); i++) {
while(tc % v[i] == 0) {
//cout << tc << " " << v[i] << endl;
tc /= v[i];
tsum += calc(v[i]);
}
}
if(tc != 1) {
tsum += calc(tc); //注意!!
}
//cout << current << " " << csum << " " << tsum << endl;
if(tsum == csum) {
return current;
}
//break;
current++;
}
}
void print(int x) {
cout << x << " ";
}
int main(void) {
//cout << isPrime(4937775) << endl;
//cout << calc(4937775) << endl;
int m;
getPrime();
//for_each(v.begin(), v.end(), print);
//cout << endl;
cin >> m;
while(m--) {
int n;
cin >> n;
cout << smith(n) << endl;
}
return 0;
}

(全文完)

本文地址:http://blog.csdn.net/milkcu/article/details/23607205

Smith Numbers - PC110706的更多相关文章

  1. POJ 1142 Smith Numbers(史密斯数)

    Description 题目描述 While skimming his phone directory in 1982, Albert Wilansky, a mathematician of Leh ...

  2. poj 1142 Smith Numbers

    Description While skimming his phone directory in 1982, Albert Wilansky, a mathematician of Lehigh U ...

  3. Smith Numbers POJ - 1142 (暴力+分治)

    题意:给定一个N,求一个大于N的最小的Smith Numbers,Smith Numbers是一个合数,且分解质因数之后上质因子每一位上的数字之和 等于 其本身每一位数字之和(别的博客偷的题意) 思路 ...

  4. POJ 1142:Smith Numbers(分解质因数)

                                   Smith Numbers Time Limit: 1000MS   Memory Limit: 10000K Total Submiss ...

  5. poj1142 Smith Numbers

    Poj1142 Smith Numbers Smith Numbers Time Limit: 1000MS Memory Limit: 10000K Total Submissions: 13854 ...

  6. UVA 10042 Smith Numbers(数论)

    Smith Numbers Background While skimming his phone directory in 1982, Albert Wilansky, a mathematicia ...

  7. A - Smith Numbers POJ

    While skimming his phone directory in 1982, Albert Wilansky, a mathematician of Lehigh University,no ...

  8. Smith Numbers(分解质因数)

    Smith Numbers Time Limit: 1000MS   Memory Limit: 10000K Total Submissions: 14173   Accepted: 4838 De ...

  9. hdu 1333 Smith Numbers

    刚开始没看清题意,要找的数一定要是素数 ;}

随机推荐

  1. CSS小记(持续更新......)

    1 内联元素和块级元素的区别以及display的三种属性区别 在说起display属性之前,就必须先说说什么是文档流,以及文档流中的内敛元素和块级元素又是指什么? 一直觉得理解了文档流的概念,一堆CS ...

  2. VS扩展开发框架

    VsSharp:一个VS扩展开发框架(上) 上篇:设计 一.引子 自2008年起开发SSMS插件SqlSharp(er)的过程中,有一天发现多数代码都大同小异,就像这样. Commands2 comm ...

  3. 怪异php 语法, 求解!

    查找php馍用来推断是否串串返回值和方法 strpos很奇怪. 请看下面的语句: echo "A1: ".(strpos("csd","c" ...

  4. HTML5使用和实战分析HTML5 WebSocket API

    通过引入一个简单的界面(请参见下面的列表),开发替代技术,由于长轮询和"永远框架,从而进一步减少延迟. 后台代码 [Constructor(in DOMString url, optiona ...

  5. hdu 5066 Harry And Physical Teacher(Bestcoder Round #14)

    Harry And Physical Teacher Time Limit: 2000/1000 MS (Java/Others)    Memory Limit: 32768/32768 K (Ja ...

  6. Kinect SDK C++ - 2. Kinect Depth Data

    Today we will learn how to get depth data from a kinect and what the format of the data is kinect co ...

  7. AspNetPager常用属性及一些样式

    AlwaysShow 总是显示分页控件,即使要分页的数据只有一页 AlwaysShowFirsLastPageNumbr 是否总是显示第一页和最后一页数字页索引按钮 BackImageUrl 面板的背 ...

  8. Swift # 柯里化函数

    前言 此次文章,讲述的是Swift的一个新特性(柯里化函数),可能很多iOS开发人员是第一次听这个词汇,包括我自己也是,自己也用了几天时间才总结出来,希望能帮助到各位咯,个人感觉偏向有开发经验的码友, ...

  9. nodeJS起步 1

    nodeJS起步 -- (1) 先来简单介绍nodeJS 我们知道JavaScript是运行在浏览器中的,浏览器为它提供了一个上下文(context),从而让JavaScript得以解析执行. nod ...

  10. c# 数据类型转换 as(C# 参考)

    as    运算符类似于强制转换操作.               但是,因此,如果转换是不可能的,as 返回 null 而不引发异常.  请看下面的示例: expression is type ? ...