题目链接

Problem Description
Given a specified total t and a list of n integers, find all distinct sums using numbers from the list that add up to t. For example, if t=4, n=6, and the list is [4,3,2,2,1,1], then there are four different sums that equal 4: 4,3+1,2+2, and 2+1+1.(A number can be used within a sum as many times as it appears in the list, and a single number counts as a sum.) Your job is to solve this problem in general.
 
Input
The input will contain one or more test cases, one per line. Each test case contains t, the total, followed by n, the number of integers in the list, followed by n integers x1,...,xn. If n=0 it signals the end of the input; otherwise, t will be a positive integer less than 1000, n will be an integer between 1 and 12(inclusive), and x1,...,xn will be positive integers less than 100. All numbers will be separated by exactly one space. The numbers in each list appear in nonincreasing order, and there may be repetitions.
 
Output
For each test case, first output a line containing 'Sums of', the total, and a colon. Then output each sum, one per line; if there are no sums, output the line 'NONE'. The numbers within each sum must appear in nonincreasing order. A number may be repeated in the sum as many times as it was repeated in the original list. The sums themselves must be sorted in decreasing order based on the numbers appearing in the sum. In other words, the sums must be sorted by their first number; sums with the same first number must be sorted by their second number; sums with the same first two numbers must be sorted by their third number; and so on. Within each test case, all sums must be distince; the same sum connot appear twice.
 
Sample Input
4 6 4 3 2 2 1 1
5 3 2 1 1
400 12 50 50 50 50 50 50 25 25 25 25 25 25
0 0
 
Sample Output
Sums of 4:
4
3+1
2+2
2+1+1
Sums of 5:
NONE
Sums of 400:
50+50+50+50+50+50+25+25+25+25
50+50+50+50+50+25+25+25+25+25+25

题解:题意是给出一个数字t,然后给出一组数字,在这组数字里面找出和为t的数字,并且按照从大到小输出,每个数字只能使用一次,相同的组只输出一次。如果无解,输出NONE。用DFS解。

#include <cstdio>
#include <iostream>
#include <string>
#include <sstream>
#include <cstring>
#include <stack>
#include <queue>
#include <algorithm>
#include <cmath>
#include <map>
#define ms(a) memset(a,0,sizeof(a))
#define msp memset(mp,0,sizeof(mp))
#define msv memset(vis,0,sizeof(vis))
using namespace std;
//#define LOCAL
int n,len,a[],b[],cnt;
int cmp(int a,int b)
{
return a>b;
}
void dfs(int x,int posa,int sum,int posb)
{
int i;
if(sum>n)return;
if(sum==n)
{
cnt++;
for(i=;i<posb;i++)
{
if(i)printf("+%d",b[i]);
else printf("%d",b[i]);
}
printf("\n");
}
for(i=posa;i<len;i++)
{
b[posb]=a[i];
dfs(a[i],i+,sum+a[i],posb+);
while(i+<len&&a[i]==a[i+])i++;
}
}
int main()
{
#ifdef LOCAL
freopen("in.txt", "r", stdin);
#endif // LOCAL
//Start
int i;
while(~scanf("%d%d",&n,&len),n+len!=)
{
for(i=;i<len;i++)scanf("%d",&a[i]);
sort(a,a+len,cmp);
printf("Sums of %d:\n",n);
cnt=;
dfs(,,,);
if(!cnt)printf("NONE\n");
}
return ;
}

HDU 1258 Sum It Up(DFS)的更多相关文章

  1. HDOJ(HDU).1258 Sum It Up (DFS)

    HDOJ(HDU).1258 Sum It Up (DFS) [从零开始DFS(6)] 点我挑战题目 从零开始DFS HDOJ.1342 Lotto [从零开始DFS(0)] - DFS思想与框架/双 ...

  2. (step4.3.4)hdu 1258(Sum It Up——DFS)

    题目大意:输入t,n,接下来有n个数组成的一个序列.输出总和为t的子序列 解题思路:DFS 代码如下(有详细的注释): #include <iostream> #include <a ...

  3. HDU 1258 Sum It Up(dfs 巧妙去重)

    传送门: http://acm.hdu.edu.cn/showproblem.php?pid=1258 Sum It Up Time Limit: 2000/1000 MS (Java/Others) ...

  4. hdu 1258 Sum It Up (dfs+路径记录)

    pid=1258">Sum It Up Time Limit: 2000/1000 MS (Java/Others)    Memory Limit: 65536/32768 K (J ...

  5. hdu 1258 Sum It Up(dfs+去重)

    题目大意: 给你一个总和(total)和一列(list)整数,共n个整数,要求用这些整数相加,使相加的结果等于total,找出所有不相同的拼凑方法. 例如,total = 4,n = 6,list = ...

  6. HDU 1258 Sum It Up (DFS)

    Sum It Up Time Limit: 2000/1000 MS (Java/Others)    Memory Limit: 65536/32768 K (Java/Others)Total S ...

  7. HDU 1258 Sum It Up

    Sum It Up Time Limit: 2000/1000 MS (Java/Others)    Memory Limit: 65536/32768 K (Java/Others)Total S ...

  8. HDOJ(HDU).1016 Prime Ring Problem (DFS)

    HDOJ(HDU).1016 Prime Ring Problem (DFS) [从零开始DFS(3)] 从零开始DFS HDOJ.1342 Lotto [从零开始DFS(0)] - DFS思想与框架 ...

  9. HDU 1241 Oil Deposits --- 入门DFS

    HDU 1241 题目大意:给定一块油田,求其连通块的数目.上下左右斜对角相邻的@属于同一个连通块. 解题思路:对每一个@进行dfs遍历并标记访问状态,一次dfs可以访问一个连通块,最后统计数量. / ...

随机推荐

  1. Ubuntu 16.04 samba相关配置

    samba是 SMB/CIFS网络协议的重新实现,它作为NFS的补充使得在Linux和Windows系统之间进行文件共享.打印更容易实现. 相关介绍: SAMBA套件: (1)samba:这个套件主要 ...

  2. js作用域详解

    // 作用域:(1)域:空间.范围.区域……     (2) 作用:读.写 script 全局变量.全局函数 自上而下 函数 由里到外 浏览器: “JS解析器” 1)“找一些东西” :var func ...

  3. Java资源大全中文版

    awesome-java-cn 是 Java 资源大全的中文版,包括开发库.开发工具.网站.博客等,将由伯乐在线持续更新. https://github.com/jobbole/awesome-jav ...

  4. C# 语言规范_版本5.0 (第9章 命名空间)

    1. 命名空间 C# 程序是利用命名空间组织起来的.命名空间既用作程序的“内部”组织系统,也用作“外部”组织系统(一种向其他程序公开自己拥有的程序元素的方法). using 指令(第 9.4 节)用来 ...

  5. 【IE6的疯狂之三】IE6 3像素BUG的实例

    问题:2列布局.左列固定,右列液态我需要做一个布局.2列,左边列固定宽度.右边列使用剩余宽度.整体宽度不固定,这样不管在17 还是19的屏幕上,左边列始终宽度不变,右边列宽度始终占据剩余宽度.但是我写 ...

  6. SQL 分组排序、CASE...WHEN...、是否为空 查询

    select  Id,CustomerCode,CustomerName,CreateId,CreateName,Phone,StatusName,(case when phone is not nu ...

  7. 在windows下安装pip scrapy...

    将 C:\Users\用户名\AppData\Local\Programs\Python\Python35\Scripts C:\Users\用户名\AppData\Local\Programs\Py ...

  8. Jdk 1.8*安装并配置

     转载自:http://www.cnblogs.com/zlslch/p/5658399.html 简单说下,jdk1.8*的下载,见http://www.cnblogs.com/zlslch/p/5 ...

  9. Intelli IDEA 使用教程

    1.怎样修改字体 File-Settings-color&Fonts-Fonts

  10. 私有云Mariadb集群搭建

    MariaDB作为Mysql的一个分支,在开源项目中已经广泛使用,例如大热的openstack,所以,为了保证服务的高可用性, 同时提高系统的负载能力,集群部署是必不可少的. MariaDB Gale ...