2216. 你猜是不是KMP

★★★☆   输入文件:guess.in   输出文件:guess.out   简单对比
时间限制:1 s   内存限制:256 MB

【题目描述】

  XX在玩两个串的游戏。首先,他拿出了两个字符串 S 和 T,XX想知道 T在 S 中出现了几次,分别在哪些位置出现。注意 T 中可能有“?”字符,这个字符可以匹配任何字符。

【输入格式】

  两行两个字符串,分别代表 S 和 T

【输出格式】

  第一行一个正整数 k,表示 T 在 S 中出现了几次。

  接下来 k 行正整数,

  分别代表 T 每次在 S 中出现的开始位置。按照从小到大

  的顺序输出,S 下标从 0 开始。

【样例输入】

  ababcadaca

  a?a

【样例输出】

  3

  0

  5

  7

【提示】

  对于 10%的数据, S 和 T 的长度不超过 100

  对于另外 20%的数据,T 中无“?”

  对于 100%的数据,S 长度不超过 10^5,T 长度不会超过 S。S 中只包含小写

  字母,T 中只包含小写字母和“?”

【来源】

  经典题目

  

  这道题咩,是FFT哦,咳咳……

 #include <iostream>
#include <cstring>
#include <cstdio>
#include <cmath>
using namespace std;
const int maxn=;
const double PI=acos(-1.0);
char s[maxn],t[maxn];
int a[maxn],b[maxn];
struct complex{
double r,i;
complex(double r_=0.0,double i_=0.0){
r=r_;i=i_;
}
complex operator +(complex a){
return complex(r+a.r,i+a.i);
}
complex operator -(complex a){
return complex(r-a.r,i-a.i);
}
complex operator *(complex a){
return complex(r*a.r-i*a.i,r*a.i+i*a.r);
}
};
complex A[maxn],B[maxn],C[maxn],D[maxn],E[maxn]; void Rader(complex *a,int len){
int k;
for(int i=,j=len>>;i<len-;i++){
if(i<j)swap(a[i],a[j]);
k=len>>;
while(j>=k){
j-=k;
k>>=;
}
j+=k;
}
} void FFT(complex *a,int len,int on){
Rader(a,len);
for(int h=;h<=len;h<<=){
complex wn(cos(-on*PI*2.0/h),sin(-on*PI*2.0/h));
for(int j=;j<len;j+=h){
complex w(,);
for(int k=j;k<j+(h>>);k++){
complex u=a[k];
complex v=a[k+(h>>)]*w;
a[k]=u+v;
a[k+(h>>)]=u-v;
w=w*wn;
}
}
}
if(on==-)
for(int i=;i<len;i++)
a[i].r/=len;
}
int ans[maxn],tot;
int main(){
freopen("guess.in","r",stdin);
freopen("guess.out","w",stdout);
scanf("%s%s",s,t);
int lens=strlen(s);
int lent=strlen(t);
for(int i=;i<lens;i++)
a[i]=s[i]-'a'+;
for(int i=;i<lent;i++){
if(t[i]=='?')
b[lent-i-]=;
else
b[lent-i-]=t[i]-'a'+;
} int len=;
while(len<=lens+lent)len<<=; for(int i=;i<lens;i++)A[i]=complex(1.0,);
for(int i=;i<lent;i++)B[i]=complex(1.0*b[i]*b[i]*b[i],);
FFT(A,len,);FFT(B,len,);
for(int i=;i<len;i++)C[i]=A[i]*B[i];
FFT(C,len,-); memset(A,,sizeof(A));
memset(B,,sizeof(B));
for(int i=;i<lens;i++)A[i]=complex(2.0*a[i],);
for(int i=;i<lent;i++)B[i]=complex(1.0*b[i]*b[i],);
FFT(A,len,);FFT(B,len,);
for(int i=;i<len;i++)D[i]=A[i]*B[i];
FFT(D,len,-); memset(A,,sizeof(A));
memset(B,,sizeof(B));
for(int i=;i<lens;i++)A[i]=complex(1.0*a[i]*a[i],);
for(int i=;i<lent;i++)B[i]=complex(1.0*b[i],);
FFT(A,len,);FFT(B,len,);
for(int i=;i<len;i++)E[i]=A[i]*B[i];
FFT(E,len,-); for(int i=lent-;i<lens;i++)
if(fabs(C[i].r-D[i].r+E[i].r)<1e-)
ans[++tot]=i-lent+; printf("%d\n",tot);
for(int i=;i<=tot;i++)
printf("%d\n",ans[i]);
return ;
}

快速傅里叶变换(FFT):COGS 2216. 你猜是不是KMP的更多相关文章

  1. [学习笔记] 多项式与快速傅里叶变换(FFT)基础

    引入 可能有不少OIer都知道FFT这个神奇的算法, 通过一系列玄学的变化就可以在 $O(nlog(n))$ 的总时间复杂度内计算出两个向量的卷积, 而代码量却非常小. 博主一年半前曾经因COGS的一 ...

  2. 多项式 之 快速傅里叶变换(FFT)/数论变换(NTT)/常用套路【入门】

    原文链接https://www.cnblogs.com/zhouzhendong/p/Fast-Fourier-Transform.html 多项式 之 快速傅里叶变换(FFT)/数论变换(NTT)/ ...

  3. 快速傅里叶变换FFT

    多项式乘法 #include <cstdio> #include <cmath> #include <algorithm> #include <cstdlib ...

  4. 快速傅里叶变换FFT& 数论变换NTT

    相关知识 时间域上的函数f(t)经过傅里叶变换(Fourier Transform)变成频率域上的F(w),也就是用一些不同频率正弦曲线的加 权叠加得到时间域上的信号. \[ F(\omega)=\m ...

  5. 快速傅里叶变换(FFT)

    扯 去北京学习的时候才系统的学习了一下卷积,当时整理了这个笔记的大部分.后来就一直放着忘了写完.直到今天都腊月二十八了,才想起来还有个FFT的笔记没整完呢.整理完这个我就假装今年的任务全都over了吧 ...

  6. 快速傅里叶变换(FFT)_转载

    FFTFFT·Fast  Fourier  TransformationFast  Fourier  Transformation快速傅立叶变换 P3803 [模板]多项式乘法(FFT) 参考上文 首 ...

  7. 基于python的快速傅里叶变换FFT(二)

    基于python的快速傅里叶变换FFT(二)本文在上一篇博客的基础上进一步探究正弦函数及其FFT变换. 知识点  FFT变换,其实就是快速离散傅里叶变换,傅立叶变换是数字信号处理领域一种很重要的算法. ...

  8. 浅谈范德蒙德(Vandermonde)方阵的逆矩阵的求法以及快速傅里叶变换(FFT)中IDFT的原理

    浅谈范德蒙德(Vandermonde)方阵的逆矩阵与拉格朗日(Lagrange)插值的关系以及快速傅里叶变换(FFT)中IDFT的原理 标签: 行列式 矩阵 线性代数 FFT 拉格朗日插值 只要稍微看 ...

  9. 快速傅里叶变换FFT / NTT

    目录 FFT 系数表示法 点值表示法 复数 DFT(离散傅里叶变换) 单位根的性质 FFT(快速傅里叶变换) IFFT(快速傅里叶逆变换) NTT 阶 原根 扩展知识 FFT 参考blog: 十分简明 ...

随机推荐

  1. ASP.NET 打包下载文件

    使用的类库为:ICSharpCode.SharpZipLib.dll 一种是打包整个文件夹,另一种是打包指定的多个文件,大同小异: using ICSharpCode.SharpZipLib.Zip; ...

  2. 设计模式学习——准备(UML类图)

    前言 其实吧,最早接触UML是源于软件设计师的考试,半路出家实在难为我了.学设计模式总是要画类图的,所以补充UML的类图的知识是很重要滴.第一篇就偷懒一点copy别人的东西了.实话说,我们都是踩在巨人 ...

  3. PHP 正则表达式匹配 preg_match 与 preg_match_all 函数

    --http://www.5idev.com/p-php_preg_match.shtml 正则表达式在 PHP 中的应用 在 PHP 应用中,正则表达式主要用于: 正则匹配:根据正则表达式匹配相应的 ...

  4. Android开发--去掉标题栏

    Android开发中为了尽可能美观,会去掉标题栏.去掉标题栏有三种方法. 一.在Activity代码里实现 在代码中实现以下方法: this.requestWindowFeature(Window.F ...

  5. iOS开发之指定UIView的某几个角(小于4)为圆角

    在iOS开发中,我们经常会遇到View设置圆角的问题,如果需要将UIView的4个角全部都为圆角,做法相当简单,只需设置其Layer的cornerRadius属性即可(项目需要使用QuartzCore ...

  6. 计算机网络基础_01IP地址

    1,IP地址组成和分级分级 IP地址=网络地址+主机地址 32位,4段组成 A:最高位是0 ,1个字节的网络地址,3个字节的主机地址 B:最高位是10,2个字节的网络地址,2个字节的主机地址 C:最高 ...

  7. Java反射与代理

    Java反射机制与动态代理,使得Java更加强大,Spring核心概念IoC.AOP就是通过反射机制与动态代理实现的. 1       Java反射 示例: User user = new User( ...

  8. 关于DM的一点总结[ZZ]

    用IBM的IM做过一段时间的电信客户挖掘由于时间不是很长,做的挖掘模型效果还有待提高应朋友要求简单总结几点(水平有限,也希望经验丰富的朋友给些建议): 1.挖掘工具主要分商业数据产品和集成数据挖掘产品 ...

  9. SGU 114.Telecasting station

    题意: 百慕大的每一座城市都坐落在一维直线上.这个国家的政府决定建造一个新的广播电视台.经过了许多次试验后,百慕大的科学家们提出了一个结论,在每座城市的不满意度等于这座城市的市民数与这座城市与广播电视 ...

  10. 如果数据为null,则转成数据库可识别的DBNULL.Value

    // <summary> /// 如果数据为null,则转成数据库可识别的DBNULL.Value /// </summary> /// <param name=&quo ...