第五章习题

1.

我们主要用到下面三个公式:

根据上述公式,我们将式子化简为

求导即可得到得到公式5-6。

2.

(a)

1 - 1/n

(b)

自助法是有有放回的,所以第二个的概率还是1 - 1/n

(c)

由于自助法是有放回的,且每次抽样都是独立事件,所以概率是(1 - 1/n)^n

(d)

答案是1-(1-1/5)^5 = 67.2%

(e)

63.4%

(f)

63.2%

(g)

pr = function(n) return(1 - (1 - 1/n)^n)
x = 1:1e+05
plot(x, pr(x))

3题和4题略

5.

(a)

library(ISLR)
summary(Default) attach(Default) set.seed(1)
glm.fit = glm(default ~ income + balance, data = Default, family = binomial)

(b)

train = sample(dim(Default)[1], dim(Default)[1]/2)
glm.fit = glm(default ~ income + balance, data = Default, family = binomial, subset = train)
glm.pred = rep("No", dim(Default)[1]/2)
glm.probs = predict(glm.fit, Default[-train, ], type = "response")
glm.pred[glm.probs > 0.5] = "Yes"
mean(glm.pred != Default[-train, ]$default)

(c)

把(b)跑三遍。。。

(d)

上面代码在拟合逻辑回归的时候加个变量即可

6.

(a)

library(ISLR)
summary(Default)
attach(Default) set.seed(1)
glm.fit = glm(default ~ income + balance, data = Default, family = binomial)
summary(glm.fit)

(b)

boot.fn = function(data, index) return(coef(glm(default ~ income + balance, data = data, family = binomial, subset = index)))

(c)

library(boot)
boot(Default, boot.fn, 50)

7.

(a)

library(ISLR)
summary(Weekly)
set.seed(1)
attach(Weekly) glm.fit = glm(Direction ~ Lag1 + Lag2, data = Weekly, family = binomial)
summary(glm.fit)

(b)

glm.fit = glm(Direction ~ Lag1 + Lag2, data = Weekly[-1, ], family = binomial)
summary(glm.fit)

(c)

predict.glm(glm.fit, Weekly[1, ], type = "response") > 0.5

(d)

count = rep(0, dim(Weekly)[1])
for (i in 1:(dim(Weekly)[1])) {
glm.fit = glm(Direction ~ Lag1 + Lag2, data = Weekly[-i, ], family = binomial)
is_up = predict.glm(glm.fit, Weekly[i, ], type = "response") > 0.5
is_true_up = Weekly[i, ]$Direction == "Up"
if (is_up != is_true_up)
count[i] = 1
}
sum(count)

(e)

mean(count)

8.

(a)

n为100,p为2

(b)

set.seed(1)
y = rnorm(100)
x = rnorm(100)
y = x - 2 * x^2 + rnorm(100)
plot(x, y)

(c)

library(boot)
Data = data.frame(x, y)
set.seed(1) glm.fit = glm(y ~ x)
cv.glm(Data, glm.fit)$delta glm.fit = glm(y ~ poly(x, 2))
cv.glm(Data, glm.fit)$delta glm.fit = glm(y ~ poly(x, 3))
cv.glm(Data, glm.fit)$delta glm.fit = glm(y ~ poly(x, 4))
cv.glm(Data, glm.fit)$delta

(d)

set.seed(10)
glm.fit = glm(y ~ x)
cv.glm(Data, glm.fit)$delta glm.fit = glm(y ~ poly(x, 2))
cv.glm(Data, glm.fit)$delta glm.fit = glm(y ~ poly(x, 3))
cv.glm(Data, glm.fit)$delta glm.fit = glm(y ~ poly(x, 4))
cv.glm(Data, glm.fit)$delta

结果一样。。。

(e)

二次的最小

9.

(a)

library(MASS)
summary(Boston) set.seed(1)
attach(Boston) medv.mean = mean(medv)
medv.mean

(b)

medv.err = sd(medv)/sqrt(length(medv))
medv.err

(c)

boot.fn = function(data, index) return(mean(data[index]))
library(boot)
bstrap = boot(medv, boot.fn, 1000)
bstrap

(d)

t.test(medv)
c(bstrap$t0 - 2 * 0.4119, bstrap$t0 + 2 * 0.4119)

(e)

medv.med = median(medv)
medv.med

(f)

boot.fn = function(data, index) return(median(data[index]))
boot(medv, boot.fn, 1000)

(g)

medv.tenth = quantile(medv, c(0.1))
medv.tenth

(h)

boot.fn = function(data, index) return(quantile(data[index], c(0.1)))
boot(medv, boot.fn, 1000)

  

统计学习导论:基于R应用——第五章习题的更多相关文章

  1. 统计学习导论:基于R应用——第三章习题

    第三章习题 部分证明题未给出答案 1. 表3.4中,零假设是指三种形式的广告对TV的销量没什么影响.而电视广告和收音机广告的P值小说明,原假设是错的,也就是电视广告和收音机广告均对TV的销量有影响:报 ...

  2. 统计学习导论:基于R应用——第四章习题

    第四章习题,部分题目未给出答案 1. 这个题比较简单,有高中生推导水平的应该不难. 2~3证明题,略 4. (a) 这个问题问我略困惑,答案怎么直接写出来了,难道不是10%么 (b) 这个答案是(0. ...

  3. 统计学习导论:基于R应用——第二章习题

    目前在看统计学习导论:基于R应用,觉得这本书非常适合入门,打算把课后习题全部做一遍,记录在此博客中. 第二章习题 1. (a) 当样本量n非常大,预测变量数p很小时,这样容易欠拟合,所以一个光滑度更高 ...

  4. 《学习Opencv》第五章 习题6

    这是第五章 习题5.6的结合版,其中实现了摄像头抓拍功能,能够成功运行. #include "stdafx.h" #include "cv.h" #includ ...

  5. 《零成本实现Web自动化测试--基于Selenium》 第五章 Selenium-RC

    一. 简介 Selenium-RC可以适应更复杂的自动化测试需求,而不仅仅是简单的浏览器操作和线性执行.Selenium-RC能够充分利用编程语言来构建更复杂的自动化测试案例,例如读写文件.查询数据库 ...

  6. 《Python 学习手册4th》 第十五章 文档

    ''' 时间: 9月5日 - 9月30日 要求: 1. 书本内容总结归纳,整理在博客园笔记上传 2. 完成所有课后习题 注:“#” 后加的是备注内容 (每天看42页内容,可以保证月底看完此书) “重点 ...

  7. The Definitive Guide To Django 2 学习笔记(九) 第五章 模型 (一)数据库访问

    以MySql数据库为例,先到http://dev.mysql.com/downloads/connector/python/处下载MysqlConnector for python的连接器. from ...

  8. C和指针 第十五章 习题

    15.8 十六进制倾印码 #include <stdio.h> #include <stdlib.h> #include <string.h> #include & ...

  9. [家里蹲大学数学杂志]第269期韩青编《A Basic Course in Partial Differential Equations》 前五章习题解答

    1.Introduction 2.First-order Differential Equations Exercise2.1. Find solutons of the following inti ...

随机推荐

  1. CentOS Device eth0 does not seem to be present 解决方案

    1. vi /etc/udev/rules.d/70-persistent-net.rules 记录eth1 的网卡地址 2.vi /etc/sysconfig/network-scrpits/ifc ...

  2. python - zipfile

    参考:http://www.cnblogs.com/sislcb/archive/2008/11/28/1342822.html zipfile - python处理zip文件的压缩与解压 ZipFi ...

  3. [转] 使用CSS3 will-change提高页面滚动、动画等渲染性能 ---张鑫旭

    一.先来看一个例子 下面这个例子来自某外文,我这里简单转述下. 视差滚动现在不是挺流行的嘛,然后Chris Ruppel当其使用background-attachment: fixed实现背景图片不随 ...

  4. jQuery--效果和遍历

    七.jQuery效果 (1)jQuery隐藏和显示 //隐藏 $("#hide").click(function(){ $("p").hide(1000); } ...

  5. WordPress防暴力破解:安全插件和用.htpasswd保护WordPress控制面板

    正在用Wordpress的博主们一定知道最近全球兴起的一波黑客锁定Wordpress暴力破解控制面板密码的风波了,据CloudFlare执行长Matthew Prince所说,所谓的暴力密码攻击是输入 ...

  6. C语言学习笔记(二):指针的用法

    与其说指针是一种工具,不如先说指针是一种数据类型. -------------------------------------------------------------华丽的分割线------- ...

  7. 解决maven仓库有jar包但是maven程序无法下载仓库jar包

    话说,这个问题困扰了我两个多月了已经~~~ 后来发现不知道被谁动了,把我的仓库没有放到仓库组里面~~~ 用admin登录进去,默认密码是admin123,然后看截图操作吧. (记得删除你本地报错说** ...

  8. MYSQL的硬盘IO过高引起的CPU过高判断

    其实,为客户提供相关日志,不就是RACKSPACE主要作的事? 俺们以后也可以效仿的.不要去解决,而是协助客户定位. http://blog.const.net.cn/a/17275.htm 上文的思 ...

  9. 关于type check的定义

    Concept: Type Checking There is no static type checking in Scheme; type checking is done at run time ...

  10. java实战之数组工具集

    java是一门面向对象的语言,我们也提到过,面向对象的一个优点就在于能够提高代码的复用性,前面我们详细讲过数组的查找,排序,等等,为了提高代码的复用性,我们何不自己写一个数组的工具集,来综合下前面所学 ...