图片人脸检测

人脸检测使用到的技术是OpenCV,上一节已经介绍了OpenCV的环境安装,点击查看.

往期目录

视频人脸检测——Dlib版(六)
OpenCV添加中文(五)
图片人脸检测——Dlib版(四)
视频人脸检测——OpenCV版(三)
图片人脸检测——OpenCV版(二)
OpenCV环境搭建(一)
更多更新,欢迎访问我的github:https://github.com/vipstone/faceai

功能展示

识别一种图上的所有人的脸,并且标出人脸的位置,画出人眼以及嘴的位置,展示效果图如下:

多张脸识别效果图:

技术实现思路

图片转换成灰色(去除色彩干扰,让图片识别更准确)

图片上画矩形

使用训练分类器查找人脸

具体实现代码

图片转换成灰色

使用OpenCV的cvtColor()转换图片颜色,代码如下:

import cv2

filepath = "img/xingye-1.jpg"
img = cv2.imread(filepath)
# 转换灰色
gray = cv2.cvtColor(img, cv2.COLOR_BGR2GRAY)
# 显示图像
cv2.imshow("Image", gray)
cv2.waitKey(0)
cv2.destroyAllWindows()

图片上画矩形

使用OpenCV的rectangle()绘制矩形,代码如下:

import cv2

filepath = "img/xingye-1.jpg"
img = cv2.imread(filepath) # 读取图片
gray = cv2.cvtColor(img, cv2.COLOR_BGR2GRAY) # 转换灰色
x = y = 10 # 坐标
w = 100 # 矩形大小(宽、高)
color = (0, 0, 255) # 定义绘制颜色
cv2.rectangle(img, (x, y), (x + w, y + w), color, 1) # 绘制矩形
cv2.imshow("Image", img) # 显示图像
cv2.waitKey(0)
cv2.destroyAllWindows() # 释放所有的窗体资源

使用训练分类器查找人脸

在使用OpenCV的人脸检测之前,需要一个人脸训练模型,格式是xml的,我们这里使用OpenCV提供好的人脸分类模型xml,下载地址:https://github.com/opencv/opencv/tree/master/data/haarcascades 可全部下载到本地,本人存放的路径是:C:\Python36\Lib\site-packages\opencv-master\data\haarcascades.

完整实现代码:

import cv2

filepath = "img/xingye-1.jpg"
img = cv2.imread(filepath) # 读取图片
gray = cv2.cvtColor(img, cv2.COLOR_BGR2GRAY) # 转换灰色 # OpenCV人脸识别分类器
classifier = cv2.CascadeClassifier(
"C:\Python36\Lib\site-packages\opencv-master\data\haarcascades\haarcascade_frontalface_default.xml"
)
color = (0, 255, 0) # 定义绘制颜色
# 调用识别人脸
faceRects = classifier.detectMultiScale(
gray, scaleFactor=1.2, minNeighbors=3, minSize=(32, 32))
if len(faceRects): # 大于0则检测到人脸
for faceRect in faceRects: # 单独框出每一张人脸
x, y, w, h = faceRect
# 框出人脸
cv2.rectangle(img, (x, y), (x + h, y + w), color, 2)
# 左眼
cv2.circle(img, (x + w // 4, y + h // 4 + 30), min(w // 8, h // 8),
color)
#右眼
cv2.circle(img, (x + 3 * w // 4, y + h // 4 + 30), min(w // 8, h // 8),
color)
#嘴巴
cv2.rectangle(img, (x + 3 * w // 8, y + 3 * h // 4),
(x + 5 * w // 8, y + 7 * h // 8), color) cv2.imshow("image", img) # 显示图像
c = cv2.waitKey(10) cv2.waitKey(0)
cv2.destroyAllWindows()

使用python实现人脸检测的更多相关文章

  1. OpenCV + python 实现人脸检测(基于照片和视频进行检测)

    OpenCV + python 实现人脸检测(基于照片和视频进行检测) Haar-like 通俗的来讲,就是作为人脸特征即可. Haar特征值反映了图像的灰度变化情况.例如:脸部的一些特征能由矩形特征 ...

  2. 手把手教你如何用 OpenCV + Python 实现人脸检测

    配好了OpenCV的Python环境,OpenCV的Python环境搭建.于是迫不及待的想体验一下opencv的人脸识别,如下文. 必备知识 Haar-like Haar-like百科释义.通俗的来讲 ...

  3. 使用python实现人脸检测<转载>

    原文地址:https://www.cnblogs.com/vipstone/p/8884991.html =============================================== ...

  4. Python视频人脸检测识别

    案例 这里我们还是使用 opencv 中自带了 haar人脸特征分类器,通过读取一段视频来识别其中的人脸. 代码实现:   动图有点花,讲究着看吧:   如果是捕捉摄像头,只需要改变以下代码即可: c ...

  5. opencv+python实时人脸检测、磨皮

    import numpy as np import cv2 cap = cv2.VideoCapture(0) face_cascade = cv2.CascadeClassifier("d ...

  6. Python学习--使用dlib、opencv进行人脸检测标注

    参考自https://www.pyimagesearch.com/2017/04/03/facial-landmarks-dlib-opencv-python/ 在原有基础上有一部分的修改(image ...

  7. OpenCV + Python 人脸检测

    必备知识 Haar-like opencv api 读取图片 灰度转换 画图 显示图像 获取人脸识别训练数据 探测人脸 处理人脸探测的结果 实例 图片素材 人脸检测代码 人脸检测结果 总结 下午的时候 ...

  8. 人脸检测? 对Python来说太简单, 调用dlib包就可以完成

    "Dlib 是一个现代化的 C ++ 工具包,包含用于创建复杂软件的机器学习算法和工具 " .它使您能够直接在 Python 中运行许多任务,其中一个例子就是人脸检测. 安装 dl ...

  9. Python学习案例之视频人脸检测识别

    前言 上一篇博文与大家分享了简单的图片人脸识别技术,其实在实际应用中,很多是通过视频流的方式进行识别,比如人脸识别通道门禁考勤系统.人脸动态跟踪识别系统等等. 案例 这里我们还是使用 opencv 中 ...

随机推荐

  1. Oracle查看表空间大小和使用率

    1. 全部表空间的大小select tablespace_name, sum(bytes)/1024/1024 from dba_data_files group by tablespace_name ...

  2. Vue 知识复习(上)

    Vue Vue实例 创建实例: var vm = new Vue({ //code }) 数据与方法: 只有当实例被创建时 data 中存在的属性才是响应式的; Vm.b = 'h1' 是不会触发视图 ...

  3. centos 7.0远程登录

    http://blog.csdn.net/e1219092641/article/details/79586476 linux在虚拟机上操作也是有许多不便之处的,但是远程登录的使用可以使操作简单不少, ...

  4. JavaScript(第三天)【数据类型】

    学习要点: 1.typeof操作符 2.Undefined类型 3.Null类型 4.Boolean类型 5.Number类型 6.String类型 7.Object类型 ECMAScript中有5种 ...

  5. Beta第二天

    听说

  6. scrapy爬虫框架教程(二)-- 爬取豆瓣电影TOP250

    scrapy爬虫框架教程(二)-- 爬取豆瓣电影TOP250 前言 经过上一篇教程我们已经大致了解了Scrapy的基本情况,并写了一个简单的小demo.这次我会以爬取豆瓣电影TOP250为例进一步为大 ...

  7. 【Swift】Runtime动态性分析

    Swift是苹果2014年发布的编程开发语言,可与Objective-C共同运行于Mac OS和iOS平台,用于搭建基于苹果平台的应用程序.Swift已经开源,目前最新版本为2.2.我们知道Objec ...

  8. Papers3

    Papers3 总览 Papers功能主要是文献收集,整理,阅读和引用. 主页面: 文献收集 Papers提供两种导入文献的方法:在线搜索和本地导入: 在线搜索 可以通过搜索题目,作者,摘要等内容中的 ...

  9. js中多维数组转一维

    法一:使用数组map()方法,对数组中的每一项运行给定函数,返回每次函数调用的结果组成的数组. var arr = [1,[2,[[3,4],5],6]]; function unid(arr){ v ...

  10. 《javascript设计模式与开发实践》阅读笔记(10)—— 组合模式

    组合模式:一些子对象组成一个父对象,子对象本身也可能是由一些孙对象组成. 有点类似树形结构的意思,这里举一个包含命令模式的例子 var list=function(){ //创建接口对象的函数 ret ...