Given a non-empty array containing only positive integers, find if the array can be partitioned into two subsets such that the sum of elements in both subsets is equal.

Note:
Both the array size and each of the array element will not exceed 100.

Example 1:

Input: [1, 5, 11, 5]

Output: true

Explanation: The array can be partitioned as [1, 5, 5] and [11].

Example 2:

Input: [1, 2, 3, 5]

Output: false

Explanation: The array cannot be partitioned into equal sum subsets.

这道题给了我们一个数组,问这个数组能不能分成两个非空子集合,使得两个子集合的元素之和相同。那么想,原数组所有数字和一定是偶数,不然根本无法拆成两个和相同的子集合,只需要算出原数组的数字之和,然后除以2,就是 target,那么问题就转换为能不能找到一个非空子集合,使得其数字之和为 target。开始博主想的是遍历所有子集合,算和,但是这种方法无法通过 OJ 的大数据集合。于是乎,动态规划 Dynamic Programming 就是不二之选。定义一个一维的 dp 数组,其中 dp[i] 表示原数组是否可以取出若干个数字,其和为i。那么最后只需要返回 dp[target] 就行了。初始化 dp[0] 为 true,由于题目中限制了所有数字为正数,就不用担心会出现和为0或者负数的情况。关键问题就是要找出状态转移方程了,需要遍历原数组中的数字,对于遍历到的每个数字 nums[i],需要更新 dp 数组,既然最终目标是想知道 dp[target] 的 boolean 值,就要想办法用数组中的数字去凑出 target,因为都是正数,所以只会越加越大,加上 nums[i] 就有可能会组成区间 [nums[i], target] 中的某个值,那么对于这个区间中的任意一个数字j,如果 dp[j - nums[i]] 为 true 的话,说明现在已经可以组成 j-nums[i] 这个数字了,再加上 nums[i],就可以组成数字j了,那么 dp[j] 就一定为 true。如果之前 dp[j] 已经为 true 了,当然还要保持 true,所以还要 ‘或’ 上自身,于是状态转移方程如下:

dp[j] = dp[j] || dp[j - nums[i]]         (nums[i] <= j <= target)

有了状态转移方程,就可以写出代码了,这里需要特别注意的是,第二个 for 循环一定要从 target 遍历到 nums[i],而不能反过来,想想为什么呢?因为如果从 nums[i] 遍历到 target 的话,假如 nums[i]=1 的话,那么 [1, target] 中所有的 dp 值都是 true,因为 dp[0] 是 true,dp[1] 会或上 dp[0],为 true,dp[2] 会或上 dp[1],为 true,依此类推,完全使的 dp 数组失效了,参见代码如下:

解法一:

class Solution {
public:
bool canPartition(vector<int>& nums) {
int sum = accumulate(nums.begin(), nums.end(), ), target = sum >> ;
if (sum & ) return false;
vector<bool> dp(target + , false);
dp[] = true;
for (int num : nums) {
for (int i = target; i >= num; --i) {
dp[i] = dp[i] || dp[i - num];
}
}
return dp[target];
}
};

这道题还可以用 bitset 来做,感觉也十分的巧妙,bisets 的大小设为 5001,为啥呢,因为题目中说了数组的长度和每个数字的大小都不会超过 100,那么最大的和为 10000,那么一半就是 5000,前面再加上个0,就是 5001 了。初始化把最低位赋值为1,算出数组之和,然后遍历数字,对于遍历到的数字 num,把 bits 向左平移 num 位,然后再或上原来的 bits,这样所有的可能出现的和位置上都为1。举个例子来说吧,比如对于数组 [2,3] 来说,初始化 bits 为1,然后对于数字2,bits 变为 101,可以看出来 bits[2] 标记为了1,然后遍历到3,bits 变为了 101101,看到 bits[5],bits[3],bits[2] 都分别为1了,正好代表了可能的和 2,3,5,这样遍历完整个数组后,去看 bits[sum >> 1] 是否为1即可,参见代码如下:

解法二:

class Solution {
public:
bool canPartition(vector<int>& nums) {
bitset<> bits();
int sum = accumulate(nums.begin(), nums.end(), );
for (int num : nums) bits |= bits << num;
return (sum % == ) && bits[sum >> ];
}
};

Github 同步地址:

https://github.com/grandyang/leetcode/issues/416

类似题目:

Partition to K Equal Sum Subset

参考资料:

https://leetcode.com/problems/partition-equal-subset-sum/

https://leetcode.com/problems/partition-equal-subset-sum/discuss/90592/01-knapsack-detailed-explanation

https://leetcode.com/problems/partition-equal-subset-sum/discuss/90590/Simple-C++-4-line-solution-using-a-bitset

https://leetcode.com/problems/partition-equal-subset-sum/discuss/90588/Concise-C++-Solution-summary-with-DFS-DP-BIT

https://leetcode.com/problems/partition-equal-subset-sum/discuss/90627/Java-Solution-similar-to-backpack-problem-Easy-to-understand

LeetCode All in One 题目讲解汇总(持续更新中...)

[LeetCode] Partition Equal Subset Sum 相同子集和分割的更多相关文章

  1. [LeetCode] 416. Partition Equal Subset Sum 相同子集和分割

    Given a non-empty array containing only positive integers, find if the array can be partitioned into ...

  2. Leetcode: Partition Equal Subset Sum

    Given a non-empty array containing only positive integers, find if the array can be partitioned into ...

  3. Leetcode ——Partition Equal Subset Sum

    Question Given a non-empty array containing only positive integers, find if the array can be partiti ...

  4. LeetCode—— Partition Equal Subset Sum

    Question Given a non-empty array containing only positive integers, find if the array can be partiti ...

  5. LN : leetcode 416 Partition Equal Subset Sum

    lc 416 Partition Equal Subset Sum 416 Partition Equal Subset Sum Given a non-empty array containing ...

  6. Partition Equal Subset Sum

    Given a non-empty array containing only positive integers, find if the array can be partitioned into ...

  7. [leetcode]416. Partition Equal Subset Sum分割数组的和相同子集

    Given a non-empty array containing only positive integers, find if the array can be partitioned into ...

  8. Leetcode 416. Partition Equal Subset Sum

    Given a non-empty array containing only positive integers, find if the array can be partitioned into ...

  9. [Swift]LeetCode416. 分割等和子集 | Partition Equal Subset Sum

    Given a non-empty array containing only positive integers, find if the array can be partitioned into ...

随机推荐

  1. 安装nodejs express框架时express命令行无效

    我也是看了这篇才明白.http://jingyan.baidu.com/article/922554468a3466851648f419.html 最近在看一本书,nodejs开发指南.至于出现这个问 ...

  2. C#开发微信门户及应用(14)-在微信菜单中采用重定向获取用户数据

    我曾经在系列文章中的<C#开发微信门户及应用(11)--微信菜单的多种表现方式介绍>中介绍了微信菜单里面的重定向操作,通过这个重定向操作,我们可以获取一个code值,然后获取用户的open ...

  3. PHP中模拟JSONArray

    前面整理过一篇文章,描述php中的array与json的array和object的转换关系.http://www.cnblogs.com/x3d/p/php-json-array-object-typ ...

  4. JDBC 详解(转载)

    原文链接:http://blog.csdn.net/cai_xingyun/article/details/41482835 什么是JDBC? Java语言访问数据库的一种规范,是一套API JDBC ...

  5. 企业管理软件ERP演变之一

             ERP软件的云应用,云管理: 移动订单: 移动订货: 移动库存: 移动工作流: 将这些原素整合在一起 聚焦企业社交网络,打造社会化企业应用的开放平台:     希望您对有帮助. 企业 ...

  6. Mybatis的基本操作案列增加以及源码的分析(二)

    一.构建一个框架的项目的思路 首先我们先建立一个web项目,我们需要jar,mybatis-config.xml和studentDao.xml的配置随后就是dao.daoimpl.entity.的架构 ...

  7. MySQL动态字符串处理DYNAMIC_STRING

    MySQL中,常常会看到一些关于动态字符串的处理,列如:DYNAMIC_STRING. 为了记录动态字符串的实际长度,缓冲区的最大长度,以及每次字符串需要调整时,及时分配新的内存,以及调整长度.MyS ...

  8. mysqld: Out of memory 解决办法(mysql)

    自己配置的XWAMP环境,默认下没有详细配置mysql的my.ini,一方面不同服务器的配置不一样,另一方面按照默认为空的方式也一直没有出现过问题.不过最近服务器挂掉了,出现的症状是: 网站不能打开, ...

  9. iOS 自定义方法 - UIView扩展

    示例代码 //#import <UIKit/UIKit.h>@interface UIView (LPCView)/** 上 */@property CGFloat top;/** 下 * ...

  10. iOS项目iCloud及CloudKit Dashboard运用

    CloudKit是苹果推出的基于iCloud的一个云端数据存储服务.其 主要由下面两部分组成: 一个仪表web页面,用于管理公开数据的记录类型. 一组API接口,用于iCloud和设备之间的数据传递. ...