【BZOJ1257】余数之和(数论分块,暴力)

题解

Description

给出正整数n和k,计算j(n, k)=k mod 1 + k mod 2 + k mod 3 + … + k mod n的值,其中k mod i表示k除以i的余数。例如j(5, 3)=3 mod 1 + 3 mod 2 + 3 mod 3 + 3 mod 4 + 3 mod 5=0+1+0+3+3=7

Input

输入仅一行,包含两个整数n, k。

Output

输出仅一行,即j(n, k)。

Sample Input

5 3

Sample Output

7

HINT

50%的数据满足:1<=n, k<=1000 100%的数据满足:1<=n ,k<=10^9

题解

很Interesting的一道题目

所求为

\[\sum_{i=1}^n{k}\ \%\ {i}
\]

而这个式子可以再改一下

\[\sum_{i=1}^nk-i*(k\ div \ i)
\]

其中\(div\)是整除

前面的\(n*k\)直接先算出来

后面的东西,很容易观察到,\(i\)是单增的

而\(k/i\)在一段范围内是不会变化的

因此,每次求出这一段范围,然后直接计算等差数列即可

#include<iostream>
#include<cstdio>
#include<cstdlib>
#include<cstring>
#include<cmath>
#include<algorithm>
#include<set>
#include<map>
#include<vector>
#include<queue>
using namespace std;
inline int read()
{
int x=0,t=1;char ch=getchar();
while((ch<'0'||ch>'9')&&ch!='-')ch=getchar();
if(ch=='-')t=-1,ch=getchar();
while(ch<='9'&&ch>='0')x=x*10+ch-48,ch=getchar();
return x*t;
}
long long ans,n,k;
int main()
{
n=read();k=read();
ans=n*k;
for(long long l=1,r=0;l<=n;l=r+1)
{
if(k/l)r=min(n,k/(k/l));
else r=n;
ans-=(k/l)*(r-l+1)*(l+r)>>1;
} printf("%lld\n",ans);
return 0;
}

【BZOJ1257】余数之和(数论分块,暴力)的更多相关文章

  1. bzoj 1257 余数之和 —— 数论分块

    题目:https://www.lydsy.com/JudgeOnline/problem.php?id=1257 \( \sum\limits_{i=1}^{n}k\%i = \sum\limits_ ...

  2. BZOJ1257 [CQOI2007]余数之和 (数论分块)

    题意: 给定n, k,求$\displaystyle \sum_{i=1}^nk\;mod\;i$ n,k<=1e9 思路: 先转化为$\displaystyle \sum_{i=1}^n(k- ...

  3. bzoj 1257 [CQOI2007]余数之和——数论分块

    题目:https://www.lydsy.com/JudgeOnline/problem.php?id=1257 \( n\%i = n - \left \lfloor n/i \right \rfl ...

  4. Bzoj 1257 [CQOI2007]余数之和 (整除分块)

    Bzoj 1257 [CQOI2007]余数之和 (整除分块) 题目链接:https://www.lydsy.com/JudgeOnline/problem.php?id=1257 一道简单题. 题目 ...

  5. bzoj1257[CQOI2007]余数之和(除法分块)

    1257: [CQOI2007]余数之和 Time Limit: 5 Sec  Memory Limit: 128 MBSubmit: 6117  Solved: 2949[Submit][Statu ...

  6. 51Nod 1225 余数之和 [整除分块]

    1225 余数之和 基准时间限制:1 秒 空间限制:131072 KB 分值: 80 难度:5级算法题  收藏  关注 F(n) = (n % 1) + (n % 2) + (n % 3) + ... ...

  7. 洛谷P2261 [CQOI2007] 余数求和 [数论分块]

    题目传送门 余数求和 题目背景 数学题,无背景 题目描述 给出正整数n和k,计算G(n, k)=k mod 1 + k mod 2 + k mod 3 + … + k mod n的值,其中k mod ...

  8. 51nod 1225 余数之和 数论

    1225 余数之和 题目连接: http://www.51nod.com/onlineJudge/questionCode.html#!problemId=1225 Description F(n) ...

  9. LUOGU P2261 [CQOI2007]余数求和(数论分块)

    传送门 解题思路 数论分块,首先将 \(k\%a\) 变成 \(k-a*\left\lfloor\dfrac{k}{a}\right\rfloor\)形式,那么\(\sum\limits_{i=1}^ ...

  10. bzoj1257: [CQOI2007]余数之和 整除分块

    题意:给出正整数n和k,计算j(n, k)=k mod 1 + k mod 2 + k mod 3 + - + k mod n的值其中k mod i表示k除以i的余数.例如j(5, 3)=3 mod ...

随机推荐

  1. MongoDB - Indexing, Replication, and Security

    Introduction of Indexes: 1> Provide high performance 2> Provide efficient execution to queries ...

  2. 【笔记】h5 页面唤起电话呼叫

    参考文章:https://www.cnblogs.com/lilin1995/p/5640684.html 最近完成一个公司的官网移动端页面,涉及到了唤起电话这个功能,说实在js 并没有为此提供 ap ...

  3. LeetCode - 776. Split BST

    Given a Binary Search Tree (BST) with root node root, and a target value V, split the tree into two ...

  4. Nginx日志分析及脚本编写

    在我们日常的运维中,当Nginx服务器正常运行后,我们会经常密切关注Nginx访问日志的相关情况,发现有异常的日志信息需要进行及时处理. 那今天我将跟大家一起来研究和分析Nginx日志,nginx默认 ...

  5. spring boot学习资源

    http://blog.csdn.net/u014695188/article/details/52226134 http://www.jianshu.com/p/887c22723e43 Sprin ...

  6. ECS的配置与使用

    登录阿里云ECS,系统是centos7.2 在linux下通过useradd方式创建新用户,切换到该用户权限,发现-bash-4.2$ . 解决方法:先查看进程,关闭相关进程.然后使用useradd ...

  7. iOS中蓝牙的使用

    Core Bluetooth的使用 1,建立中心设备 2,扫描外设(Discover Peripheral) 3,连接外设(Connect Peripheral) 4,扫描外设中的服务和特征(Disc ...

  8. 使用FFMPeg对视频进行处理

    FFMPeg处理视频的核心操作方式是命令,无论是在Windows上还是Linux上.那么下边就简单介绍下,常见的处理命令. 示例1:截取一张352×240尺寸大小的,格式为jpg的图片: ffmpeg ...

  9. Apache服务器安装-apache已经卸载,如何删除注册在系统的服务

    cmd进入windows的命令行客户端,执行:sc delete apache 注意:以管理员的身份删除,同理,此方法也可以删除其他类似的服务.例如sc delete MongoDB.

  10. Jar程序使用MyBatis集成阿里巴巴druid连接池

    在写jar程序,而不是web程序的时候,使用mybatis作为持久层,可以集成POOLED连接池,而阿里的druid不能用,确实很郁闷.不过有办法. 首先准备好数据库配置文件 然后对Druid进行一个 ...