用CNN对CIFAR10进行分类(pytorch)
CIFAR10有60000个\(32*32\)大小的有颜色的图像,一共10种类别,每种类别有6000个。
训练集一共50000个图像,测试集一共10000个图像。
先载入数据集
import numpy as np
import torch
import torch.optim as optim
from torchvision import datasets
import torchvision.transforms as transforms
transform = transforms.Compose([
transforms.ToTensor(),
transforms.Normalize((0.5, 0.5, 0.5), (0.5, 0.5, 0.5))
])
trainset = datasets.CIFAR10(root='./data', train=True,
download=True, transform=transform)
trainloader = torch.utils.data.DataLoader(trainset, batch_size=4,
shuffle=True, num_workers=2)
testset = datasets.CIFAR10(root='./data', train=False,
download=True, transform=transform)
testloader = torch.utils.data.DataLoader(testset, batch_size=4,
shuffle=False, num_workers=2)
再定义网络架构
import torch.nn.functional as F
import torch.nn as nn
class classifier(nn.Module):
def __init__(self):
super().__init__()
'''输入为3*32*32,尺寸减半是因为池化层'''
self.conv1 = nn.Conv2d(3, 16, 3, padding=1) #输出为16*16*16
self.conv2 = nn.Conv2d(16, 32, 3, padding=1) #输出为32*8*8
self.pool = nn.MaxPool2d(2, 2)
self.fc1 = nn.Linear(32 * 8 * 8, 512)
self.fc2 = nn.Linear(512, 10)
self.dropout = nn.Dropout(0.2) #防止过拟合
def forward(self, x):
x = self.pool(F.relu(self.conv1(x)))
x = self.pool(F.relu(self.conv2(x)))
x = x.view(-1, 32 * 8 * 8)
x = self.dropout(x)
x = F.relu(self.fc1(x))
x = self.dropout(x)
x = self.fc2(x)
return x
开始训练!
model = classifier()
criterion = nn.CrossEntropyLoss()
optimizer = optim.SGD(model.parameters(), lr=0.01, momentum=0.9)
epochs = 10
for e in range(epochs):
train_loss = 0
for data, target in train_loader:
optimizer.zero_grad()
output = model(data)
loss = criterion(output, target)
loss.backward()
optimizer.step()
train_loss += loss.item() * data.size(0) #loss.item()是平均损失,平均损失*batch_size=一次训练的损失
train_loss = train_loss/len(train_loader.dataset)
print('Epoch: {} \t Training Loss:{:.6f}'.format(e+1, train_loss))
下面是损失的输出
Epoch: 1 Training Loss:1.366521
Epoch: 2 Training Loss:1.063830
Epoch: 3 Training Loss:0.916826
Epoch: 4 Training Loss:0.799573
Epoch: 5 Training Loss:0.708303
Epoch: 6 Training Loss:0.627443
Epoch: 7 Training Loss:0.564043
Epoch: 8 Training Loss:0.503542
Epoch: 9 Training Loss:0.465513
Epoch: 10 Training Loss:0.418729
看看在验证集上的表现如何!
class_correct = list(0. for i in range(10))
class_total = list(0. for i in range(10))
with torch.no_grad():
for data in testloader:
images, labels = data
outputs = model(images)
_, predicted = torch.max(outputs, 1)
c = (predicted == labels).squeeze()
for i in range(4):
label = labels[i]
class_correct[label] += c[i].item()
class_total[label] += 1
for i in range(10):
print('Accuracy of %5s : %2d %%' % (
classes[i], 100 * class_correct[i] / class_total[i]))
以及它的输出
Accuracy of plane : 74 %
Accuracy of car : 76 %
Accuracy of bird : 55 %
Accuracy of cat : 56 %
Accuracy of deer : 54 %
Accuracy of dog : 54 %
Accuracy of frog : 81 %
Accuracy of horse : 72 %
Accuracy of ship : 74 %
Accuracy of truck : 68 %
用CNN对CIFAR10进行分类(pytorch)的更多相关文章
- 深度学习识别CIFAR10:pytorch训练LeNet、AlexNet、VGG19实现及比较(三)
版权声明:本文为博主原创文章,欢迎转载,并请注明出处.联系方式:460356155@qq.com VGGNet在2014年ImageNet图像分类任务竞赛中有出色的表现.网络结构如下图所示: 同样的, ...
- 深度学习识别CIFAR10:pytorch训练LeNet、AlexNet、VGG19实现及比较(二)
版权声明:本文为博主原创文章,欢迎转载,并请注明出处.联系方式:460356155@qq.com AlexNet在2012年ImageNet图像分类任务竞赛中获得冠军.网络结构如下图所示: 对CIFA ...
- 深度学习之 cnn 进行 CIFAR10 分类
深度学习之 cnn 进行 CIFAR10 分类 import torchvision as tv import torchvision.transforms as transforms from to ...
- CNN Mini-Fashion数据集以及Pytorch初体验
下载Fasion-MNIST数据集 Fashion-MNIST是一个替代原始的MNIST手写数字数据集的另一个图像数据集. 它是由Zalando(一家德国的时尚科技公司)旗下的研究部门提供.其涵盖了来 ...
- 深度学习识别CIFAR10:pytorch训练LeNet、AlexNet、VGG19实现及比较(一)
版权声明:本文为博主原创文章,欢迎转载,并请注明出处.联系方式:460356155@qq.com 前面几篇文章介绍了MINIST,对这种简单图片的识别,LeNet-5可以达到99%的识别率. CIFA ...
- CNN训练Cifar-10技巧
关于数据集 Cifar-10是由Hinton的两个大弟子Alex Krizhevsky.Ilya Sutskever收集的一个用于普适物体识别的数据集.Cifar是加拿大政府牵头投资的一个先进科学项目 ...
- 第十三节,使用带有全局平均池化层的CNN对CIFAR10数据集分类
这里使用的数据集仍然是CIFAR-10,由于之前写过一篇使用AlexNet对CIFAR数据集进行分类的文章,已经详细介绍了这个数据集,当时我们是直接把这些图片的数据文件下载下来,然后使用pickle进 ...
- TensorFlow CNN 测试CIFAR-10数据集
本系列文章由 @yhl_leo 出品,转载请注明出处. 文章链接: http://blog.csdn.net/yhl_leo/article/details/50738311 1 CIFAR-10 数 ...
- 实战keras——用CNN实现cifar10图像分类
原文:https://blog.csdn.net/zzulp/article/details/76358694 import keras from keras.datasets import cifa ...
随机推荐
- 解决Spring MVC前台传参中文乱码问题
在web.xml文件中配置字符编码过滤器: <filter> <filter-name>CharacterEncoding</filter-name> <fi ...
- SpringBoot打包项目成war包,并部署到服务器的tomcat上
最近遇到项目需要上线部署到服务器,需要讲自己的SpringBoot项目打包成war包,部署到tomcat上. 下面记录下打包部署的过程. (1) 将SpringBoot项目打包成war包, 一.修改打 ...
- ButterKnife的使用详解
ButterKnife的使用详解 1,概述: ButterKnife则是注解中相对简单易懂的很不错的开源框架. ButterKnife是目前常用的一种依托Java注解机制实现辅助代码生成的框架:用到了 ...
- VS OpenCV imread imwrite nameWindow等相关报错问题
排查过程 1. 项目属性C++目录中,包含库include 和 lib 目录了吗? 去自己的opencv安装目录中找到include 和 lib(一般在x64下有两个vc14/vc15, 我的是4.0 ...
- deepin linux学习笔记
目录 deepin linux学习笔记 前言 linux常用命令 ls 显示文件夹内容 cd 切换当前目录 pwd 查看当前工作目录 mkdir 新建文件夹 rm 删除文件或文件夹 mv 移动文件 c ...
- 第五篇Scrum冲刺博客
一.Daily Scrum Meeting照片 二.每个人的工作 成员 ItemID 已完成工作 明天计划完成的工作 遇到的困难 张鸿 o1 整合界面至游戏中 将其他剩余功能进行整合 游戏状态的切换 ...
- 【Oracle RAC】Linux系统Oracle12c RAC安装配置详细记录过程V2.0(图文并茂)
[Oracle RAC]Linux系统Oracle12c RAC安装配置详细过程V2.0(图文并茂) 2 Oracle12c RAC数据库安装准备工作2.1 安装环境介绍2.2 数据库安装软件下载3 ...
- Docker容器镜像删除
好吧,本来认为删除镜像是一件很容易的事情,但刚开始上手,还是有点百思不得其解.删着删着,发现果然很容易.分享下本人的心得: 分两种情况:那么要删除镜像,首先得删除容器,删除容器时,确保容器已停止运行: ...
- git stash解决代码merge出错
最近在使用git提交代码时,遇到一个问题,就是我修改了几个文件的代码,然后又想把自己代码库里面的代码更新到最新版本,然后不出所料,代码冲突了!作为一个喜欢解决问题的程序员,怎么会被这样的问题所困住呢? ...
- Mybatis 批量添加,批量更新
此篇适合有一定的mybatis使用经验的人阅读. 一.批量更新 为了提升操作数据的效率,第一想到的是做批量操作,直接上批量更新代码: <update id="updateBatchMe ...