leetcode 5 Longest Palindromic Substring--最长回文字符串
问题描述
Given a string S, find the longest palindromic substring in S. You may assume that the maximum length of S is 1000, and there exists one unique longest palindromic substring.
所谓回文字符串,就是一个字符串,从左到右读和从右到左读是完全一样的。比如”a” , “aaabbaaa”
之前去笔试了三星研究院,写算法题的时候限定了编程语言只能使用的头文件和库函数,这在很大程度上考察了一个程序员的单位时间生产力。比如java只能用util包,c/c++语言只能包含以下三个头文件:
stdio.h
malloc.h //ANSI标准建议使用stdlib.h头文件
iostream.h // 非标准输入输出,不需要命名空间
所以我想,针对这种高标准的要求,以后做leetcode系列时应该写三个版本,c语言版本不使用库函数,c++版本使用STL,python版本
解决方案
1.暴力方案(Brute Force)
对于字符串的每一个子串,都判断一下是不是回文字符串,完后返回最长的那一个
(Brute Force) [Time Limit Exceeded]
时间复杂度分析:O(n3),空间复杂度O(n),显然超时了。
#include "stdafx.h"
#include <iostream>
#include <string>
using namespace std;
char result[1000]={0};
bool isHuiwen(int begin,int end,char* s)
{
if (end==begin||end<begin)
{
return true;
}
if (s[begin]!=s[end])
{
return false;
}
return isHuiwen(begin+1,end-1,s);
}
char* longestHuiwen(int length,char* s)
{
int begin = 0,end=0,sum=0;
for (int i=0;i<length;i++)
{
for (int j=0;j<=i;j++)
{
if (isHuiwen(j,i,s))
{
if (i-j>=sum)
{
sum = i -j;
begin = j;
end = i;
}
}
}
}
strncpy(result,s+begin,sum+1);//由0开始计数
return result;
}
int _tmain(int argc, _TCHAR* argv[])
{
char* s = "abcabaaaabbacabbaa";
char* r_s = longestHuiwen(18,s);
return 0;
}
2.问题转换为求最长相似子串
Approach #1 (Longest Common Substring) [Accepted]
Common mistake
Some people will be tempted to come up with a quick solution, which is unfortunately flawed (however can be corrected easily):
Reverse S and become S′.
Find the longest common substring between S and S′, which must also be the longest palindromic substring.This seemed to work, let’s see some examples below.
For example,
S=”caba”
S′=”abac”
The longest common substring between S and S′ is ”aba”, which is the answer.
Let’s try another example:
S=”abacdfgdcaba”
S′=”abacdgfdcaba”
The longest common substring between S and S′ is ”abacd”
Clearly, this is not a valid palindrome.
讨论帖子: http://bbs.csdn.net/topics/392005408
其他三种解法
Approach #3 (Dynamic Programming) [Accepted]
To improve over the brute force solution, we first observe how we can avoid unnecessary re-computation while validating palindromes. Consider the case
”ababa”
”ababa”. If we already knew that
”bab”
”bab” is a palindrome, it is obvious that
”ababa”
”ababa” must be a palindrome since the two left and right end letters are the same.
We define P(i,j)P(i,j) as following:
P(i,j)={true,
if the substring Si…Sj is a palindrome
false,
otherwise.
P(i,j)={true,if the substring Si…Sj is a palindromefalse,otherwise.
Therefore,
P(i, j) = ( P(i+1, j-1) \text{ and } S_i == S_j ) P(i,j)=(P(i+1,j−1) and Si==Sj)
The base cases are:
P(i, i) = true P(i,i)=true
P(i, i+1) = ( S_i == S_{i+1} ) P(i,i+1)=(Si ==Si+1)
This yields a straight forward DP solution, which we first initialize the one and two letters palindromes, and work our way up finding all three letters palindromes, and so on…
Complexity Analysis
Time complexity : O(n^2)O(n2). This gives us a runtime complexity of O(n^2)O(n2).
Space complexity : O(n^2)O(n2). It uses O(n^2)O(n2) space to store the table.
Additional Exercise
Could you improve the above space complexity further and how?
Approach #4 (Expand Around Center) [Accepted]
In fact, we could solve it in O(n^2)O(n2 ) time using only constant space.
We observe that a palindrome mirrors around its center. Therefore, a palindrome can be expanded from its center, and there are only 2n - 12n−1 such centers.
You might be asking why there are 2n - 12n−1 but not nn centers? The reason is the center of a palindrome can be in between two letters. Such palindromes have even number of letters (such as
”abba””abba”) and its center are between the two ‘b”b’s.
public String longestPalindrome(String s) {
int start = 0, end = 0;
for (int i = 0; i < s.length(); i++) {
int len1 = expandAroundCenter(s, i, i);
int len2 = expandAroundCenter(s, i, i + 1);
int len = Math.max(len1, len2);
if (len > end - start) {
start = i - (len - 1) / 2;
end = i + len / 2;
}
}
return s.substring(start, end + 1);
}
private int expandAroundCenter(String s, int left, int right) {
int L = left, R = right;
while (L >= 0 && R < s.length() && s.charAt(L) == s.charAt(R)) {
L–;
R++;
}
return R - L - 1;
}
Complexity Analysis
Time complexity : O(n^2)O(n2 ). Since expanding a palindrome around its center could take O(n)O(n) time, the overall complexity is O(n^2)O(n2 ).
Space complexity : O(1)O(1).
Approach #5 (Manacher’s Algorithm) [Accepted]
There is even an O(n)O(n) algorithm called Manacher’s algorithm, explained here in detail. However, it is a non-trivial algorithm, and no one expects you to come up with this algorithm in a 45 minutes coding session. But, please go ahead and understand it, I promise it will be a lot of fun.
参考代码
c代码
char* longestPalindrome(char* s) {
int i,length=strlen(s);
char* new_s;
new_s=malloc(sizeof(char)*(2*length + 2));
new_s[0]='$';
new_s[1]='#';
for(i=0;i<length;i++)
{
*(new_s+2*i+2)=s[i];
*(new_s+2*i+3)='#';
}
int len=2*length + 2;
int* r;
r=malloc(sizeof(int)*len);
r[0]=0;
int center=1;
int max_right=0;
for(i=1;i<len;i++)
{
if(i<max_right)
{
if( (max_right-i)> r[2*center-i] )
r[i]=r[2*center-i];
else
r[i]=(max_right-i);
}
else r[i]=1;
while(new_s[i-r[i]]==new_s[i+r[i]] && i-r[i]>0 && i+r[i]<len)
{
r[i]++;
}
if(i+r[i] > max_right)
{
center = i;
max_right = i+r[i];
}
}
int max_r = 0;
int j=0;
for(i=1;i<len;i++)
{
if( max_r<r[i])
{
j=i;
max_r= r[i];
}
}
int m=(j-(max_r-2)-2)/2;
int n=(j+(max_r-2)-2)/2;
char *c;
c=malloc((max_r)*sizeof(char));
int x=0;
for(i=m;i<=n,x<max_r-1;i++)
{
c[x]=s[i];
x++;
}
*(c+max_r-1)='\0';
return c;
free(r);
free(new_s);
free(c);
}
c++代码
string longestPalindrome(string s) {
if (s.empty()) return"";
if (s.size() == 1) return s;
int min_start = 0, max_len = 1;
for (int i = 0; i < s.size();) {
if (s.size() - i <= max_len / 2) break;
int j = i, k = i;
while (k < s.size()-1 && s[k+1] == s[k]) ++k; // Skip duplicate characters.
i = k+1;
while (k < s.size()-1 && j > 0 && s[k + 1] == s[j - 1]) { ++k; --j; } // Expand.int new_len = k - j + 1;
if (new_len > max_len) { min_start = j; max_len = new_len; }
}
return s.substr(min_start, max_len);
}
python参考代码
def longestPalindrome(self, s):
res = ""
for i in xrange(len(s)):
# odd case, like "aba"
tmp = self.helper(s, i, i)
if len(tmp) > len(res):
res = tmp
# even case, like "abba"
tmp = self.helper(s, i, i+1)
if len(tmp) > len(res):
res = tmp
return res
# get the longest palindrome, l, r are the middle indexes
# from inner to outer
def helper(self, s, l, r):
while l >= 0 and r < len(s) and s[l] == s[r]:
l -= 1; r += 1
return s[l+1:r]
参考文献
http://articles.leetcode.com/longest-palindromic-substring-part-ii/
https://www.felix021.com/blog/read.php?2040
https://leetcode.com/articles/longest-palindromic-substring/
leetcode 5 Longest Palindromic Substring--最长回文字符串的更多相关文章
- Leetcode 5. Longest Palindromic Substring(最长回文子串, Manacher算法)
Leetcode 5. Longest Palindromic Substring(最长回文子串, Manacher算法) Given a string s, find the longest pal ...
- [LeetCode] 5. Longest Palindromic Substring 最长回文子串
Given a string s, find the longest palindromic substring in s. You may assume that the maximum lengt ...
- [leetcode]5. Longest Palindromic Substring最长回文子串
Given a string s, find the longest palindromic substring in s. You may assume that the maximum lengt ...
- 转载-----Java Longest Palindromic Substring(最长回文字符串)
转载地址:https://www.cnblogs.com/clnchanpin/p/6880322.html 假设一个字符串从左向右写和从右向左写是一样的,这种字符串就叫做palindromic st ...
- Longest Palindromic Substring (最长回文字符串)——两种方法还没看,仍需认真看看
Given a string S, find the longest palindromic substring in S. You may assume that the maximum lengt ...
- Java Longest Palindromic Substring(最长回文字符串)
假设一个字符串从左向右写和从右向左写是一样的,这种字符串就叫做palindromic string.如aba,或者abba.本题是这种,给定输入一个字符串.要求输出一个子串,使得子串是最长的padro ...
- [LeetCode] 516. Longest Palindromic Subsequence 最长回文子序列
Given a string s, find the longest palindromic subsequence's length in s. You may assume that the ma ...
- 1. Longest Palindromic Substring ( 最长回文子串 )
要求: Given a string S, find the longest palindromic substring in S. (从字符串 S 中最长回文子字符串.) 何为回文字符串? A pa ...
- [LeetCode] Longest Palindromic Substring 最长回文串
Given a string S, find the longest palindromic substring in S. You may assume that the maximum lengt ...
- 【LeetCode】5. Longest Palindromic Substring 最长回文子串
作者: 负雪明烛 id: fuxuemingzhu 个人博客: http://fuxuemingzhu.cn/ 公众号:负雪明烛 本文关键词:最长回文子串,题解,leetcode, 力扣,python ...
随机推荐
- SQL外连接
1.左外连接 取出左侧关系中所有与右侧关系中任一元组都不匹配的元组,用空值null充填所有来自右侧关系的属性,构成新的元组,将其加入自然连接的结果中 2.右外连接 取出右侧关系中所有与左侧关系中任一元 ...
- matlab coder 工具箱使用教程
之前一直听说matlab代码可以转C和C++代码,但是一直都没有时间尝试,最近闲着无聊,就想来试试如何转换,上网查了很多资料,照着做下去,发现都有一些问题,之后自己琢磨了很久,终于将一个很简单的例子给 ...
- 一起做orb-slam(2)
1.ushort用法? USHORT is a macro which is not part of the official C++ language (it's probably defined ...
- [LeetCode] Maximum Length of Repeated Subarray 最长的重复子数组
Given two integer arrays A and B, return the maximum length of an subarray that appears in both arra ...
- [LeetCode] Keyboard Row 键盘行
Given a List of words, return the words that can be typed using letters of alphabet on only one row' ...
- Mysql之使用Mysql运算符
Mysql运算符: 1.算术运算符 加减乘除与求模 SELECT 6+4 加法操作, 6-4 减法操作, 6*4 乘法操作, 6/2 除法操作, 6 DIV 2 除 ...
- vim 批量注释和批量取消注释
批量注释 按ctrl+v进入可视块模式, 上下移动选中需要注释的行, 按I, 输入注释符号#, 按两下Esc, 保存 批量取消注释 按ctrl+v进入可视块模式, 上下移动选中需要取消注释的行, ...
- python打造一个Mysql数字类型注入脚本(1)
前言: 总是想写一个sql注入脚本,但是之前的那些都不行. 这次做好了准备,然后嘿嘿嘿. 准备: sql注入的基础知识 熟悉怎么判断 正文: 思路概念图: 这里我没有限制用户输入,不限制的话可能会 @ ...
- [HEOI2016]排序
题目描述 在2016年,佳媛姐姐喜欢上了数字序列.因而他经常研究关于序列的一些奇奇怪怪的问题,现在他在研究一个难题,需要你来帮助他.这个难题是这样子 的:给出一个1到n的全排列,现在对这个全排列序列进 ...
- UVA - 11997:K Smallest Sums
多路归并 #include<cstdio> #include<cstdlib> #include<algorithm> #include<cstring> ...