leetcode 5 Longest Palindromic Substring--最长回文字符串
问题描述
Given a string S, find the longest palindromic substring in S. You may assume that the maximum length of S is 1000, and there exists one unique longest palindromic substring.
所谓回文字符串,就是一个字符串,从左到右读和从右到左读是完全一样的。比如”a” , “aaabbaaa”
之前去笔试了三星研究院,写算法题的时候限定了编程语言只能使用的头文件和库函数,这在很大程度上考察了一个程序员的单位时间生产力。比如java只能用util包,c/c++语言只能包含以下三个头文件:
stdio.h
malloc.h //ANSI标准建议使用stdlib.h头文件
iostream.h // 非标准输入输出,不需要命名空间
所以我想,针对这种高标准的要求,以后做leetcode系列时应该写三个版本,c语言版本不使用库函数,c++版本使用STL,python版本
解决方案
1.暴力方案(Brute Force)
对于字符串的每一个子串,都判断一下是不是回文字符串,完后返回最长的那一个
(Brute Force) [Time Limit Exceeded]
时间复杂度分析:O(n3),空间复杂度O(n),显然超时了。
#include "stdafx.h"
#include <iostream>
#include <string>
using namespace std;
char result[1000]={0};
bool isHuiwen(int begin,int end,char* s)
{
if (end==begin||end<begin)
{
return true;
}
if (s[begin]!=s[end])
{
return false;
}
return isHuiwen(begin+1,end-1,s);
}
char* longestHuiwen(int length,char* s)
{
int begin = 0,end=0,sum=0;
for (int i=0;i<length;i++)
{
for (int j=0;j<=i;j++)
{
if (isHuiwen(j,i,s))
{
if (i-j>=sum)
{
sum = i -j;
begin = j;
end = i;
}
}
}
}
strncpy(result,s+begin,sum+1);//由0开始计数
return result;
}
int _tmain(int argc, _TCHAR* argv[])
{
char* s = "abcabaaaabbacabbaa";
char* r_s = longestHuiwen(18,s);
return 0;
}
2.问题转换为求最长相似子串
Approach #1 (Longest Common Substring) [Accepted]
Common mistake
Some people will be tempted to come up with a quick solution, which is unfortunately flawed (however can be corrected easily):
Reverse S and become S′.
Find the longest common substring between S and S′, which must also be the longest palindromic substring.This seemed to work, let’s see some examples below.
For example,
S=”caba”
S′=”abac”
The longest common substring between S and S′ is ”aba”, which is the answer.
Let’s try another example:
S=”abacdfgdcaba”
S′=”abacdgfdcaba”
The longest common substring between S and S′ is ”abacd”
Clearly, this is not a valid palindrome.
讨论帖子: http://bbs.csdn.net/topics/392005408
其他三种解法
Approach #3 (Dynamic Programming) [Accepted]
To improve over the brute force solution, we first observe how we can avoid unnecessary re-computation while validating palindromes. Consider the case
”ababa”
”ababa”. If we already knew that
”bab”
”bab” is a palindrome, it is obvious that
”ababa”
”ababa” must be a palindrome since the two left and right end letters are the same.
We define P(i,j)P(i,j) as following:
P(i,j)={true,
if the substring Si…Sj is a palindrome
false,
otherwise.
P(i,j)={true,if the substring Si…Sj is a palindromefalse,otherwise.
Therefore,
P(i, j) = ( P(i+1, j-1) \text{ and } S_i == S_j ) P(i,j)=(P(i+1,j−1) and Si==Sj)
The base cases are:
P(i, i) = true P(i,i)=true
P(i, i+1) = ( S_i == S_{i+1} ) P(i,i+1)=(Si ==Si+1)
This yields a straight forward DP solution, which we first initialize the one and two letters palindromes, and work our way up finding all three letters palindromes, and so on…
Complexity Analysis
Time complexity : O(n^2)O(n2). This gives us a runtime complexity of O(n^2)O(n2).
Space complexity : O(n^2)O(n2). It uses O(n^2)O(n2) space to store the table.
Additional Exercise
Could you improve the above space complexity further and how?
Approach #4 (Expand Around Center) [Accepted]
In fact, we could solve it in O(n^2)O(n2 ) time using only constant space.
We observe that a palindrome mirrors around its center. Therefore, a palindrome can be expanded from its center, and there are only 2n - 12n−1 such centers.
You might be asking why there are 2n - 12n−1 but not nn centers? The reason is the center of a palindrome can be in between two letters. Such palindromes have even number of letters (such as
”abba””abba”) and its center are between the two ‘b”b’s.
public String longestPalindrome(String s) {
int start = 0, end = 0;
for (int i = 0; i < s.length(); i++) {
int len1 = expandAroundCenter(s, i, i);
int len2 = expandAroundCenter(s, i, i + 1);
int len = Math.max(len1, len2);
if (len > end - start) {
start = i - (len - 1) / 2;
end = i + len / 2;
}
}
return s.substring(start, end + 1);
}
private int expandAroundCenter(String s, int left, int right) {
int L = left, R = right;
while (L >= 0 && R < s.length() && s.charAt(L) == s.charAt(R)) {
L–;
R++;
}
return R - L - 1;
}
Complexity Analysis
Time complexity : O(n^2)O(n2 ). Since expanding a palindrome around its center could take O(n)O(n) time, the overall complexity is O(n^2)O(n2 ).
Space complexity : O(1)O(1).
Approach #5 (Manacher’s Algorithm) [Accepted]
There is even an O(n)O(n) algorithm called Manacher’s algorithm, explained here in detail. However, it is a non-trivial algorithm, and no one expects you to come up with this algorithm in a 45 minutes coding session. But, please go ahead and understand it, I promise it will be a lot of fun.
参考代码
c代码
char* longestPalindrome(char* s) {
int i,length=strlen(s);
char* new_s;
new_s=malloc(sizeof(char)*(2*length + 2));
new_s[0]='$';
new_s[1]='#';
for(i=0;i<length;i++)
{
*(new_s+2*i+2)=s[i];
*(new_s+2*i+3)='#';
}
int len=2*length + 2;
int* r;
r=malloc(sizeof(int)*len);
r[0]=0;
int center=1;
int max_right=0;
for(i=1;i<len;i++)
{
if(i<max_right)
{
if( (max_right-i)> r[2*center-i] )
r[i]=r[2*center-i];
else
r[i]=(max_right-i);
}
else r[i]=1;
while(new_s[i-r[i]]==new_s[i+r[i]] && i-r[i]>0 && i+r[i]<len)
{
r[i]++;
}
if(i+r[i] > max_right)
{
center = i;
max_right = i+r[i];
}
}
int max_r = 0;
int j=0;
for(i=1;i<len;i++)
{
if( max_r<r[i])
{
j=i;
max_r= r[i];
}
}
int m=(j-(max_r-2)-2)/2;
int n=(j+(max_r-2)-2)/2;
char *c;
c=malloc((max_r)*sizeof(char));
int x=0;
for(i=m;i<=n,x<max_r-1;i++)
{
c[x]=s[i];
x++;
}
*(c+max_r-1)='\0';
return c;
free(r);
free(new_s);
free(c);
}
c++代码
string longestPalindrome(string s) {
if (s.empty()) return"";
if (s.size() == 1) return s;
int min_start = 0, max_len = 1;
for (int i = 0; i < s.size();) {
if (s.size() - i <= max_len / 2) break;
int j = i, k = i;
while (k < s.size()-1 && s[k+1] == s[k]) ++k; // Skip duplicate characters.
i = k+1;
while (k < s.size()-1 && j > 0 && s[k + 1] == s[j - 1]) { ++k; --j; } // Expand.int new_len = k - j + 1;
if (new_len > max_len) { min_start = j; max_len = new_len; }
}
return s.substr(min_start, max_len);
}
python参考代码
def longestPalindrome(self, s):
res = ""
for i in xrange(len(s)):
# odd case, like "aba"
tmp = self.helper(s, i, i)
if len(tmp) > len(res):
res = tmp
# even case, like "abba"
tmp = self.helper(s, i, i+1)
if len(tmp) > len(res):
res = tmp
return res
# get the longest palindrome, l, r are the middle indexes
# from inner to outer
def helper(self, s, l, r):
while l >= 0 and r < len(s) and s[l] == s[r]:
l -= 1; r += 1
return s[l+1:r]
参考文献
http://articles.leetcode.com/longest-palindromic-substring-part-ii/
https://www.felix021.com/blog/read.php?2040
https://leetcode.com/articles/longest-palindromic-substring/
leetcode 5 Longest Palindromic Substring--最长回文字符串的更多相关文章
- Leetcode 5. Longest Palindromic Substring(最长回文子串, Manacher算法)
Leetcode 5. Longest Palindromic Substring(最长回文子串, Manacher算法) Given a string s, find the longest pal ...
- [LeetCode] 5. Longest Palindromic Substring 最长回文子串
Given a string s, find the longest palindromic substring in s. You may assume that the maximum lengt ...
- [leetcode]5. Longest Palindromic Substring最长回文子串
Given a string s, find the longest palindromic substring in s. You may assume that the maximum lengt ...
- 转载-----Java Longest Palindromic Substring(最长回文字符串)
转载地址:https://www.cnblogs.com/clnchanpin/p/6880322.html 假设一个字符串从左向右写和从右向左写是一样的,这种字符串就叫做palindromic st ...
- Longest Palindromic Substring (最长回文字符串)——两种方法还没看,仍需认真看看
Given a string S, find the longest palindromic substring in S. You may assume that the maximum lengt ...
- Java Longest Palindromic Substring(最长回文字符串)
假设一个字符串从左向右写和从右向左写是一样的,这种字符串就叫做palindromic string.如aba,或者abba.本题是这种,给定输入一个字符串.要求输出一个子串,使得子串是最长的padro ...
- [LeetCode] 516. Longest Palindromic Subsequence 最长回文子序列
Given a string s, find the longest palindromic subsequence's length in s. You may assume that the ma ...
- 1. Longest Palindromic Substring ( 最长回文子串 )
要求: Given a string S, find the longest palindromic substring in S. (从字符串 S 中最长回文子字符串.) 何为回文字符串? A pa ...
- [LeetCode] Longest Palindromic Substring 最长回文串
Given a string S, find the longest palindromic substring in S. You may assume that the maximum lengt ...
- 【LeetCode】5. Longest Palindromic Substring 最长回文子串
作者: 负雪明烛 id: fuxuemingzhu 个人博客: http://fuxuemingzhu.cn/ 公众号:负雪明烛 本文关键词:最长回文子串,题解,leetcode, 力扣,python ...
随机推荐
- 原生js代码挑战之动态添加双色球
var ballArr = []; //存放已有的红球,用来排除重复和排序window.onload = function(){ var btn = document.createElement(&q ...
- Java 内部类示例
在下面的示例中,创建了一个数组,使用升序的整数初始化它,并打印索引为偶数的数组值. public class DataStructure { // 创建一个数组 private final stati ...
- java中String类学习笔记
1.String的两种实例化方式 String str="hello";//直接赋值的方式: String str=new String("hello");// ...
- NIO-学习
通道(Channel) 通道表示打开到 IO 设备(例如:文件.套接字)的连接.若需要使用 NIO 系统,需要获取用于连接 IO 设备的通道以及用于容纳数据的缓冲区.然后操作缓冲区,对数据进行处理.C ...
- [NOI 2015]软件包管理器
Description Linux用户和OSX用户一定对软件包管理器不会陌生. 通过软件包管理器,你可以通过一行命令安装某一个软件包,然后软件包管理器会帮助你从软件源下载软件包,同时自动解决所有的依赖 ...
- 空间漫游(SAC大佬的测试)
题目描述由于球哥和巨佬嘉诚交了很多保护费,我们有钱进行一次 d 维空间漫游.d 维空间中有 d 个正交坐标轴,可以用这些坐标轴来描述你在空间中的位置和移动的方向.例如,d = 1 时,空间是一个数轴, ...
- ●BZOJ 3998 [TJOI2015]弦论
题链: http://www.lydsy.com/JudgeOnline/problem.php?id=3998题解: 后缀自动机. 当T=0时, 由于在后缀自动机上沿着trans转移,每个串都是互不 ...
- Codeforces Round #408 (Div. 2)
C. Bank Hacking 题目大意:给出一棵n个节点的树,每个节点有一个权值,删掉一个点的代价为当前这个点的权值,并且会使其相邻点和距离为2且中间隔着未被删除的点的点权值加1,现在选一个点开始删 ...
- bzoj 2435: [Noi2011]道路修建
Description 在 W 星球上有 n 个国家.为了各自国家的经济发展,他们决定在各个国家 之间建设双向道路使得国家之间连通.但是每个国家的国王都很吝啬,他们只愿 意修建恰好 n – 1条双向道 ...
- C语言程序设计第五次作业——循环结构
(一)改错题 1.题目:输出华氏摄氏温度转换表:输入两个整数lower和upper,输出一张华氏摄氏温度转换表,华氏温度的取值范围是{lower,upper},每次增加2℉.计算公式如下: c = 5 ...