问题描述

Given a string S, find the longest palindromic substring in S. You may assume that the maximum length of S is 1000, and there exists one unique longest palindromic substring.

所谓回文字符串,就是一个字符串,从左到右读和从右到左读是完全一样的。比如”a” , “aaabbaaa”

之前去笔试了三星研究院,写算法题的时候限定了编程语言只能使用的头文件和库函数,这在很大程度上考察了一个程序员的单位时间生产力。比如java只能用util包,c/c++语言只能包含以下三个头文件:

stdio.h

malloc.h //ANSI标准建议使用stdlib.h头文件

iostream.h // 非标准输入输出,不需要命名空间

所以我想,针对这种高标准的要求,以后做leetcode系列时应该写三个版本,c语言版本不使用库函数,c++版本使用STL,python版本

解决方案

1.暴力方案(Brute Force)

对于字符串的每一个子串,都判断一下是不是回文字符串,完后返回最长的那一个

(Brute Force) [Time Limit Exceeded]

时间复杂度分析:O(n3),空间复杂度O(n),显然超时了。

#include "stdafx.h"
#include <iostream>
#include <string>
using namespace std;
char result[1000]={0}; bool isHuiwen(int begin,int end,char* s)
{
if (end==begin||end<begin)
{
return true;
}
if (s[begin]!=s[end])
{
return false;
}
return isHuiwen(begin+1,end-1,s);
} char* longestHuiwen(int length,char* s)
{
int begin = 0,end=0,sum=0;
for (int i=0;i<length;i++)
{
for (int j=0;j<=i;j++)
{
if (isHuiwen(j,i,s))
{
if (i-j>=sum)
{
sum = i -j;
begin = j;
end = i;
} } }
}
strncpy(result,s+begin,sum+1);//由0开始计数
return result;
} int _tmain(int argc, _TCHAR* argv[])
{
char* s = "abcabaaaabbacabbaa";
char* r_s = longestHuiwen(18,s);
return 0;
}

2.问题转换为求最长相似子串

Approach #1 (Longest Common Substring) [Accepted]

Common mistake

Some people will be tempted to come up with a quick solution, which is unfortunately flawed (however can be corrected easily):

Reverse S and become S′.

Find the longest common substring between S and S​′, which must also be the longest palindromic substring.This seemed to work, let’s see some examples below.

For example,

S=”caba”

S′=”abac”

The longest common substring between S and S​′ is ”aba”, which is the answer.

Let’s try another example:

S=”abacdfgdcaba”

S′=”abacdgfdcaba”

The longest common substring between S and S​′ is ”abacd”

Clearly, this is not a valid palindrome.

讨论帖子: http://bbs.csdn.net/topics/392005408

其他三种解法

Approach #3 (Dynamic Programming) [Accepted]

To improve over the brute force solution, we first observe how we can avoid unnecessary re-computation while validating palindromes. Consider the case

”ababa”

”ababa”. If we already knew that

”bab”

”bab” is a palindrome, it is obvious that

”ababa”

”ababa” must be a palindrome since the two left and right end letters are the same.

We define P(i,j)P(i,j) as following:

P(i,j)={true,

if the substring Si…Sj is a palindrome

false,

otherwise.

P(i,j)={true,if the substring Si…Sj is a palindromefalse,otherwise.

Therefore,

P(i, j) = ( P(i+1, j-1) \text{ and } S_i == S_j ) P(i,j)=(P(i+1,j−1) and S​i==S​j)

The base cases are:

P(i, i) = true P(i,i)=true

P(i, i+1) = ( S_i == S_{i+1} ) P(i,i+1)=(S​i ==Si+1)

This yields a straight forward DP solution, which we first initialize the one and two letters palindromes, and work our way up finding all three letters palindromes, and so on…

Complexity Analysis

Time complexity : O(n^2)O(n​2). This gives us a runtime complexity of O(n^2)O(n2).

Space complexity : O(n^2)O(n​2). It uses O(n^2)O(n2) space to store the table.

Additional Exercise

Could you improve the above space complexity further and how?

Approach #4 (Expand Around Center) [Accepted]

In fact, we could solve it in O(n^2)O(n​2 ) time using only constant space.

We observe that a palindrome mirrors around its center. Therefore, a palindrome can be expanded from its center, and there are only 2n - 12n−1 such centers.

You might be asking why there are 2n - 12n−1 but not nn centers? The reason is the center of a palindrome can be in between two letters. Such palindromes have even number of letters (such as

”abba””abba”) and its center are between the two ‘b”b’s.

public String longestPalindrome(String s) {

int start = 0, end = 0;

for (int i = 0; i < s.length(); i++) {

int len1 = expandAroundCenter(s, i, i);

int len2 = expandAroundCenter(s, i, i + 1);

int len = Math.max(len1, len2);

if (len > end - start) {

start = i - (len - 1) / 2;

end = i + len / 2;

}

}

return s.substring(start, end + 1);

}

private int expandAroundCenter(String s, int left, int right) {

int L = left, R = right;

while (L >= 0 && R < s.length() && s.charAt(L) == s.charAt(R)) {

L–;

R++;

}

return R - L - 1;

}

Complexity Analysis

Time complexity : O(n^2)O(n​2​​ ). Since expanding a palindrome around its center could take O(n)O(n) time, the overall complexity is O(n^2)O(n​2​​ ).

Space complexity : O(1)O(1).

Approach #5 (Manacher’s Algorithm) [Accepted]

There is even an O(n)O(n) algorithm called Manacher’s algorithm, explained here in detail. However, it is a non-trivial algorithm, and no one expects you to come up with this algorithm in a 45 minutes coding session. But, please go ahead and understand it, I promise it will be a lot of fun.

参考代码

c代码

char* longestPalindrome(char* s) {
int i,length=strlen(s);
char* new_s;
new_s=malloc(sizeof(char)*(2*length + 2));
new_s[0]='$';
new_s[1]='#'; for(i=0;i<length;i++)
{
*(new_s+2*i+2)=s[i];
*(new_s+2*i+3)='#'; }
int len=2*length + 2;
int* r;
r=malloc(sizeof(int)*len);
r[0]=0;
int center=1;
int max_right=0;
for(i=1;i<len;i++)
{
if(i<max_right)
{
if( (max_right-i)> r[2*center-i] )
r[i]=r[2*center-i];
else
r[i]=(max_right-i);
}
else r[i]=1;
while(new_s[i-r[i]]==new_s[i+r[i]] && i-r[i]>0 && i+r[i]<len)
{
r[i]++;
} if(i+r[i] > max_right)
{
center = i;
max_right = i+r[i]; } }
int max_r = 0;
int j=0;
for(i=1;i<len;i++)
{
if( max_r<r[i])
{
j=i;
max_r= r[i];
}
}
int m=(j-(max_r-2)-2)/2;
int n=(j+(max_r-2)-2)/2;
char *c;
c=malloc((max_r)*sizeof(char)); int x=0;
for(i=m;i<=n,x<max_r-1;i++)
{
c[x]=s[i];
x++;
}
*(c+max_r-1)='\0';
return c;
free(r);
free(new_s);
free(c); }

c++代码

string longestPalindrome(string s) {
if (s.empty()) return"";
if (s.size() == 1) return s;
int min_start = 0, max_len = 1;
for (int i = 0; i < s.size();) {
if (s.size() - i <= max_len / 2) break;
int j = i, k = i;
while (k < s.size()-1 && s[k+1] == s[k]) ++k; // Skip duplicate characters.
i = k+1;
while (k < s.size()-1 && j > 0 && s[k + 1] == s[j - 1]) { ++k; --j; } // Expand.int new_len = k - j + 1;
if (new_len > max_len) { min_start = j; max_len = new_len; }
}
return s.substr(min_start, max_len);
}

python参考代码


def longestPalindrome(self, s):
res = ""
for i in xrange(len(s)):
# odd case, like "aba"
tmp = self.helper(s, i, i)
if len(tmp) > len(res):
res = tmp
# even case, like "abba"
tmp = self.helper(s, i, i+1)
if len(tmp) > len(res):
res = tmp
return res # get the longest palindrome, l, r are the middle indexes
# from inner to outer
def helper(self, s, l, r):
while l >= 0 and r < len(s) and s[l] == s[r]:
l -= 1; r += 1
return s[l+1:r]

参考文献

http://articles.leetcode.com/longest-palindromic-substring-part-ii/

https://www.felix021.com/blog/read.php?2040

https://leetcode.com/articles/longest-palindromic-substring/

leetcode 5 Longest Palindromic Substring--最长回文字符串的更多相关文章

  1. Leetcode 5. Longest Palindromic Substring(最长回文子串, Manacher算法)

    Leetcode 5. Longest Palindromic Substring(最长回文子串, Manacher算法) Given a string s, find the longest pal ...

  2. [LeetCode] 5. Longest Palindromic Substring 最长回文子串

    Given a string s, find the longest palindromic substring in s. You may assume that the maximum lengt ...

  3. [leetcode]5. Longest Palindromic Substring最长回文子串

    Given a string s, find the longest palindromic substring in s. You may assume that the maximum lengt ...

  4. 转载-----Java Longest Palindromic Substring(最长回文字符串)

    转载地址:https://www.cnblogs.com/clnchanpin/p/6880322.html 假设一个字符串从左向右写和从右向左写是一样的,这种字符串就叫做palindromic st ...

  5. Longest Palindromic Substring (最长回文字符串)——两种方法还没看,仍需认真看看

    Given a string S, find the longest palindromic substring in S. You may assume that the maximum lengt ...

  6. Java Longest Palindromic Substring(最长回文字符串)

    假设一个字符串从左向右写和从右向左写是一样的,这种字符串就叫做palindromic string.如aba,或者abba.本题是这种,给定输入一个字符串.要求输出一个子串,使得子串是最长的padro ...

  7. [LeetCode] 516. Longest Palindromic Subsequence 最长回文子序列

    Given a string s, find the longest palindromic subsequence's length in s. You may assume that the ma ...

  8. 1. Longest Palindromic Substring ( 最长回文子串 )

    要求: Given a string S, find the longest palindromic substring in S. (从字符串 S 中最长回文子字符串.) 何为回文字符串? A pa ...

  9. [LeetCode] Longest Palindromic Substring 最长回文串

    Given a string S, find the longest palindromic substring in S. You may assume that the maximum lengt ...

  10. 【LeetCode】5. Longest Palindromic Substring 最长回文子串

    作者: 负雪明烛 id: fuxuemingzhu 个人博客: http://fuxuemingzhu.cn/ 公众号:负雪明烛 本文关键词:最长回文子串,题解,leetcode, 力扣,python ...

随机推荐

  1. Collections、Arrays 简明

    Collections : 它的出现给集合操作提供了更多的功能.这个类不需要创建对象,内部提供的都是静态方法. 一般方法 Collections. sort (list); list 集合进行元素的自 ...

  2. R语言-ggplot初级

    ggplot2简介: 在2005年开始出现,吸取了基础绘图系统和lattice绘图系统的优点,并利用一个强大的模型来对其进行改进,这一模型基于之前所述的一系列准则, 能够创建任意类型的统计图形 1.导 ...

  3. Angular1.x使用小结

    之前工作以Angular1.x为主,主要做业务系统,以后工作中技术栈可能以vue为主,在此对Angular1.x的使用做一个简单总结,这里使用1.5+版本. 基本概念 1.依赖注入 依赖注入,在ang ...

  4. 毕业回馈--89C51keil工程的创建

    声明:毕业回馈类博客均为大学毕业前夕同同学共享内容.为了给大学做一个总结,报答母校的栽培,才发起这样一个活动. ******************************************** ...

  5. [POI2009]KAM-Pebbles

    题目描述 Johny and Margaret are playing "pebbles". Initially there is a certain number of pebb ...

  6. [AH/HNOI2017]大佬

    题目描述 人们总是难免会碰到大佬.他们趾高气昂地谈论凡人不能理解的算法和数据结构,走到任何一个地方,大佬的气场就能让周围的人吓得瑟瑟发抖,不敢言语. 你作为一个 OIER,面对这样的事情非常不开心,于 ...

  7. 冰精冻西瓜[P3787洛谷]

    题目描述 琪露诺是拥有操纵冷气程度的能力的妖精,一天她发现了一片西瓜地.这里有n个西瓜,由n-1条西瓜蔓连接,形成一个有根树,琪露诺想要把它们冷冻起来慢慢吃. 这些西瓜蔓具有神奇的性质,可以将经过它的 ...

  8. hdu 5340 (manacher)

    Sample Input 2 abc abaadada   Sample Output Yes No 判断是否能成为3个非空回文子串 manacher算法求出个点回文长度,在找出第一个和最后一个保存下 ...

  9. spine - unity3D(摘自博主softimagewht)

    摘自:(博主 http://www.cnblogs.com/softimagewht/p/4149118.html) //skeletonDataSkeletonAnimation skeletonA ...

  10. Python中模块之sys的功能介绍

    sys模块的功能介绍 1. sys的变量 argv 命令行参数 方法:sys.argv 返回值:list 例如:test1.py文件中有两句语句1.import sys 2.print(sys.arg ...