leetcode 5 Longest Palindromic Substring--最长回文字符串
问题描述
Given a string S, find the longest palindromic substring in S. You may assume that the maximum length of S is 1000, and there exists one unique longest palindromic substring.
所谓回文字符串,就是一个字符串,从左到右读和从右到左读是完全一样的。比如”a” , “aaabbaaa”
之前去笔试了三星研究院,写算法题的时候限定了编程语言只能使用的头文件和库函数,这在很大程度上考察了一个程序员的单位时间生产力。比如java只能用util包,c/c++语言只能包含以下三个头文件:
stdio.h
malloc.h //ANSI标准建议使用stdlib.h头文件
iostream.h // 非标准输入输出,不需要命名空间
所以我想,针对这种高标准的要求,以后做leetcode系列时应该写三个版本,c语言版本不使用库函数,c++版本使用STL,python版本
解决方案
1.暴力方案(Brute Force)
对于字符串的每一个子串,都判断一下是不是回文字符串,完后返回最长的那一个
(Brute Force) [Time Limit Exceeded]
时间复杂度分析:O(n3),空间复杂度O(n),显然超时了。
#include "stdafx.h"
#include <iostream>
#include <string>
using namespace std;
char result[1000]={0};
bool isHuiwen(int begin,int end,char* s)
{
if (end==begin||end<begin)
{
return true;
}
if (s[begin]!=s[end])
{
return false;
}
return isHuiwen(begin+1,end-1,s);
}
char* longestHuiwen(int length,char* s)
{
int begin = 0,end=0,sum=0;
for (int i=0;i<length;i++)
{
for (int j=0;j<=i;j++)
{
if (isHuiwen(j,i,s))
{
if (i-j>=sum)
{
sum = i -j;
begin = j;
end = i;
}
}
}
}
strncpy(result,s+begin,sum+1);//由0开始计数
return result;
}
int _tmain(int argc, _TCHAR* argv[])
{
char* s = "abcabaaaabbacabbaa";
char* r_s = longestHuiwen(18,s);
return 0;
}
2.问题转换为求最长相似子串
Approach #1 (Longest Common Substring) [Accepted]
Common mistake
Some people will be tempted to come up with a quick solution, which is unfortunately flawed (however can be corrected easily):
Reverse S and become S′.
Find the longest common substring between S and S′, which must also be the longest palindromic substring.This seemed to work, let’s see some examples below.
For example,
S=”caba”
S′=”abac”
The longest common substring between S and S′ is ”aba”, which is the answer.
Let’s try another example:
S=”abacdfgdcaba”
S′=”abacdgfdcaba”
The longest common substring between S and S′ is ”abacd”
Clearly, this is not a valid palindrome.
讨论帖子: http://bbs.csdn.net/topics/392005408
其他三种解法
Approach #3 (Dynamic Programming) [Accepted]
To improve over the brute force solution, we first observe how we can avoid unnecessary re-computation while validating palindromes. Consider the case
”ababa”
”ababa”. If we already knew that
”bab”
”bab” is a palindrome, it is obvious that
”ababa”
”ababa” must be a palindrome since the two left and right end letters are the same.
We define P(i,j)P(i,j) as following:
P(i,j)={true,
if the substring Si…Sj is a palindrome
false,
otherwise.
P(i,j)={true,if the substring Si…Sj is a palindromefalse,otherwise.
Therefore,
P(i, j) = ( P(i+1, j-1) \text{ and } S_i == S_j ) P(i,j)=(P(i+1,j−1) and Si==Sj)
The base cases are:
P(i, i) = true P(i,i)=true
P(i, i+1) = ( S_i == S_{i+1} ) P(i,i+1)=(Si ==Si+1)
This yields a straight forward DP solution, which we first initialize the one and two letters palindromes, and work our way up finding all three letters palindromes, and so on…
Complexity Analysis
Time complexity : O(n^2)O(n2). This gives us a runtime complexity of O(n^2)O(n2).
Space complexity : O(n^2)O(n2). It uses O(n^2)O(n2) space to store the table.
Additional Exercise
Could you improve the above space complexity further and how?
Approach #4 (Expand Around Center) [Accepted]
In fact, we could solve it in O(n^2)O(n2 ) time using only constant space.
We observe that a palindrome mirrors around its center. Therefore, a palindrome can be expanded from its center, and there are only 2n - 12n−1 such centers.
You might be asking why there are 2n - 12n−1 but not nn centers? The reason is the center of a palindrome can be in between two letters. Such palindromes have even number of letters (such as
”abba””abba”) and its center are between the two ‘b”b’s.
public String longestPalindrome(String s) {
int start = 0, end = 0;
for (int i = 0; i < s.length(); i++) {
int len1 = expandAroundCenter(s, i, i);
int len2 = expandAroundCenter(s, i, i + 1);
int len = Math.max(len1, len2);
if (len > end - start) {
start = i - (len - 1) / 2;
end = i + len / 2;
}
}
return s.substring(start, end + 1);
}
private int expandAroundCenter(String s, int left, int right) {
int L = left, R = right;
while (L >= 0 && R < s.length() && s.charAt(L) == s.charAt(R)) {
L–;
R++;
}
return R - L - 1;
}
Complexity Analysis
Time complexity : O(n^2)O(n2 ). Since expanding a palindrome around its center could take O(n)O(n) time, the overall complexity is O(n^2)O(n2 ).
Space complexity : O(1)O(1).
Approach #5 (Manacher’s Algorithm) [Accepted]
There is even an O(n)O(n) algorithm called Manacher’s algorithm, explained here in detail. However, it is a non-trivial algorithm, and no one expects you to come up with this algorithm in a 45 minutes coding session. But, please go ahead and understand it, I promise it will be a lot of fun.
参考代码
c代码
char* longestPalindrome(char* s) {
int i,length=strlen(s);
char* new_s;
new_s=malloc(sizeof(char)*(2*length + 2));
new_s[0]='$';
new_s[1]='#';
for(i=0;i<length;i++)
{
*(new_s+2*i+2)=s[i];
*(new_s+2*i+3)='#';
}
int len=2*length + 2;
int* r;
r=malloc(sizeof(int)*len);
r[0]=0;
int center=1;
int max_right=0;
for(i=1;i<len;i++)
{
if(i<max_right)
{
if( (max_right-i)> r[2*center-i] )
r[i]=r[2*center-i];
else
r[i]=(max_right-i);
}
else r[i]=1;
while(new_s[i-r[i]]==new_s[i+r[i]] && i-r[i]>0 && i+r[i]<len)
{
r[i]++;
}
if(i+r[i] > max_right)
{
center = i;
max_right = i+r[i];
}
}
int max_r = 0;
int j=0;
for(i=1;i<len;i++)
{
if( max_r<r[i])
{
j=i;
max_r= r[i];
}
}
int m=(j-(max_r-2)-2)/2;
int n=(j+(max_r-2)-2)/2;
char *c;
c=malloc((max_r)*sizeof(char));
int x=0;
for(i=m;i<=n,x<max_r-1;i++)
{
c[x]=s[i];
x++;
}
*(c+max_r-1)='\0';
return c;
free(r);
free(new_s);
free(c);
}
c++代码
string longestPalindrome(string s) {
if (s.empty()) return"";
if (s.size() == 1) return s;
int min_start = 0, max_len = 1;
for (int i = 0; i < s.size();) {
if (s.size() - i <= max_len / 2) break;
int j = i, k = i;
while (k < s.size()-1 && s[k+1] == s[k]) ++k; // Skip duplicate characters.
i = k+1;
while (k < s.size()-1 && j > 0 && s[k + 1] == s[j - 1]) { ++k; --j; } // Expand.int new_len = k - j + 1;
if (new_len > max_len) { min_start = j; max_len = new_len; }
}
return s.substr(min_start, max_len);
}
python参考代码
def longestPalindrome(self, s):
res = ""
for i in xrange(len(s)):
# odd case, like "aba"
tmp = self.helper(s, i, i)
if len(tmp) > len(res):
res = tmp
# even case, like "abba"
tmp = self.helper(s, i, i+1)
if len(tmp) > len(res):
res = tmp
return res
# get the longest palindrome, l, r are the middle indexes
# from inner to outer
def helper(self, s, l, r):
while l >= 0 and r < len(s) and s[l] == s[r]:
l -= 1; r += 1
return s[l+1:r]
参考文献
http://articles.leetcode.com/longest-palindromic-substring-part-ii/
https://www.felix021.com/blog/read.php?2040
https://leetcode.com/articles/longest-palindromic-substring/
leetcode 5 Longest Palindromic Substring--最长回文字符串的更多相关文章
- Leetcode 5. Longest Palindromic Substring(最长回文子串, Manacher算法)
Leetcode 5. Longest Palindromic Substring(最长回文子串, Manacher算法) Given a string s, find the longest pal ...
- [LeetCode] 5. Longest Palindromic Substring 最长回文子串
Given a string s, find the longest palindromic substring in s. You may assume that the maximum lengt ...
- [leetcode]5. Longest Palindromic Substring最长回文子串
Given a string s, find the longest palindromic substring in s. You may assume that the maximum lengt ...
- 转载-----Java Longest Palindromic Substring(最长回文字符串)
转载地址:https://www.cnblogs.com/clnchanpin/p/6880322.html 假设一个字符串从左向右写和从右向左写是一样的,这种字符串就叫做palindromic st ...
- Longest Palindromic Substring (最长回文字符串)——两种方法还没看,仍需认真看看
Given a string S, find the longest palindromic substring in S. You may assume that the maximum lengt ...
- Java Longest Palindromic Substring(最长回文字符串)
假设一个字符串从左向右写和从右向左写是一样的,这种字符串就叫做palindromic string.如aba,或者abba.本题是这种,给定输入一个字符串.要求输出一个子串,使得子串是最长的padro ...
- [LeetCode] 516. Longest Palindromic Subsequence 最长回文子序列
Given a string s, find the longest palindromic subsequence's length in s. You may assume that the ma ...
- 1. Longest Palindromic Substring ( 最长回文子串 )
要求: Given a string S, find the longest palindromic substring in S. (从字符串 S 中最长回文子字符串.) 何为回文字符串? A pa ...
- [LeetCode] Longest Palindromic Substring 最长回文串
Given a string S, find the longest palindromic substring in S. You may assume that the maximum lengt ...
- 【LeetCode】5. Longest Palindromic Substring 最长回文子串
作者: 负雪明烛 id: fuxuemingzhu 个人博客: http://fuxuemingzhu.cn/ 公众号:负雪明烛 本文关键词:最长回文子串,题解,leetcode, 力扣,python ...
随机推荐
- 关于python 使用腾讯云OCR 通用印刷体识别
腾讯的python SDK没有通用印刷体识别,所以参考了别人识别网上图片的方式:https://www.cnblogs.com/semishigure/p/7690789.html 但是咱们使用的基本 ...
- 五,前端---关于JS的点滴
一:异常抛出 try,catch,throw 例如: function myFunction(){ try{ var x = document.getElementBy('demo').value; ...
- [ABP]浅谈模块系统与 ABP 框架初始化
在 ABP 框架当中所有库以及项目都是以模块的形式存在,所有模块都是继承自AbpModule 这个抽象基类,每个模块都拥有四个生命周期.分别是: PreInitialze(); Initialize( ...
- leetcode 566 Reshape the Matrix 重塑矩阵
参考:https://www.cnblogs.com/grandyang/p/6804753.html 注意:复习容器的定义方法?? class Solution { public: vector&l ...
- 17.10.28&29
28上午 骚猪选讲 28下午 BOZJ 1081 [SCOI2005]超级格雷码 感觉就是一个找规律,然后模拟输出.半天没找到一个比较简便的模拟方法,这份代码是学习网上一位大佬的,很巧妙. 代码: # ...
- hdu3183 RMQ
A Magic Lamp Time Limit: 2000/1000 MS (Java/Others) Memory Limit: 32768/32768 K (Java/Others) Tot ...
- [bzoj2648/2716]SJY摆棋子
平面上有n个点,要求支持插入一个点和查询一个点的最近点距离 n,m<=500000 用kdtree实现,但是复杂度貌似没法保证.....(莫名加了替罪羊重建更慢了...) #include< ...
- Python中模块之os的功能介绍
Python中模块之os的功能介绍 1. os的变量 path 模块路径 方法:os.path 返回值:module 例如:print(os.path) >>> <module ...
- Mac Webview OC与JS交互实现
1.首先,需要定义一个JS可识别的变量(如external)用于OC与JS交互 - (void)webView:(WebView *)sender didClearWindowObject:(WebS ...
- BeanFactory not initialized or already closed - call 'refresh' before accessing beans via the ApplicationContext
这个坑爹的玩意 有几个出现错误的原因 服务器 1.服务器重复启动同一个部署 这个时候要停止然后启动 电脑差的 重启电脑 重启服务器就好了 代码 2.bean工厂不知道哪里关闭 3.bean工厂没有找到 ...