codeforces#1136E. Nastya Hasn't Written a Legend(二分+线段树)
题目链接:
http://codeforces.com/contest/1136/problem/E
题意:
初始有a数组和k数组
有两种操作,一,求l到r的区间和,二,$a_i\pm x$
并且会有一个连锁反应
$$while\left ( a_{i+1}<a_i+k_i \right )a_{i+1}=a_i+k_i,i++ $$
数据范围:
$2 \leq n \leq 10^{5}$
$-10^{9} \leq a_i \leq 10^{9}$
$-10^{6} \leq k_i \leq 10^{6}$
$1 \leq q \leq 10^{5}$
$1 \leq i \leq n$,$0 \leq x \leq 10^{6}$
$1 \leq l \leq r \leq n$
分析:
对于每次修改,我们可以用二分查找到连锁的末尾。
而对于一个被修改后的区间$(i,r)$的元素$a_x$,它由两部分组成$a_x=a_i+\sum_{j=i}^{x-1}k_j$
两部分的值都可以轻易算出,然后用两颗线段树分别记录两部分的区间和(一颗线段树也行)。
用到前缀和的前缀和,还有懒惰标记
具体实现见ac代码
ac代码:
#include<bits/stdc++.h>
#define ll long long
using namespace std;
const int maxn=1e5+10;
const ll INF=1e18;
ll sum1[maxn],sum2[maxn],treea[4*maxn],treeb[4*maxn],lazya[4*maxn],lazyb[4*maxn];
int a[maxn];
void bulida(int l,int r,int rt)
{
int md=(r+l)/2;
if(r==l)
{
treea[rt]=a[l];
return;
}
bulida(l,md,rt*2);
bulida(md+1,r,rt*2+1);
treea[rt]=treea[rt*2]+treea[rt*2+1];
}
void pushdowna(int l,int r,int rt)
{
int md=(l+r)/2;
if(lazya[rt]!=-INF)
{
treea[rt*2]=(md-l+1)*lazya[rt];
treea[rt*2+1]=(r-md-1+1)*lazya[rt];
lazya[rt*2]=lazya[rt*2+1]=lazya[rt];
lazya[rt]=-INF;
}
}
ll quera(int l,int r,int nowl,int nowr,int rt)
{
if(r<nowl||l>nowr)return 0;
int md=(nowr+nowl)/2;
if(l<=nowl&&r>=nowr)return treea[rt];
pushdowna(nowl,nowr,rt);
return quera(l,r,nowl,md,rt*2)+quera(l,r,md+1,nowr,rt*2+1);
}
void updataa(ll x,int l,int r,int nowl,int nowr,int rt)
{
if(r<nowl||l>nowr)return ;
int md=(nowr+nowl)/2;
if(l<=nowl&&r>=nowr)
{
treea[rt]=(nowr-nowl+1)*x;
lazya[rt]=x;
return ;
}
pushdowna(nowl,nowr,rt);
updataa(x,l,r,nowl,md,rt*2);
updataa(x,l,r,md+1,nowr,rt*2+1);
treea[rt]=treea[rt*2]+treea[rt*2+1];
} void pushdownb(int l,int r,int rt)
{
int md=(l+r)/2;
if(lazyb[rt]!=-INF)
{
treeb[rt*2]=sum2[md-1]-sum2[l-2]+(l-md-1)*sum1[lazyb[rt]-1];
treeb[rt*2+1]=sum2[r-1]-sum2[md+1-2]+(md+1-r-1)*sum1[lazyb[rt]-1];
lazyb[rt*2]=lazyb[rt*2+1]=lazyb[rt];
lazyb[rt]=-INF;
}
}
void updatabb(ll x,int pos,int nowl,int nowr,int rt)
{
int md=(nowr+nowl)/2;
if(nowl==nowr)
{
treeb[rt]=x;
return ;
}
pushdownb(nowl,nowr,rt);
if(pos>=md+1)updatabb(x,pos,md+1,nowr,rt*2+1);
else updatabb(x,pos,nowl,md,rt*2);
treeb[rt]=treeb[rt*2]+treeb[rt*2+1];
}
ll querb(int l,int r,int nowl,int nowr,int rt)
{
if(r<nowl||l>nowr)return 0;
int md=(nowr+nowl)/2;
if(l<=nowl&&r>=nowr)return treeb[rt];
pushdownb(nowl,nowr,rt);
return querb(l,r,nowl,md,rt*2)+querb(l,r,md+1,nowr,rt*2+1);
}
void updatab(ll x,int l,int r,int nowl,int nowr,int rt)
{
if(r<nowl||l>nowr)return ;
int md=(nowr+nowl)/2;
if(l<=nowl&&r>=nowr)
{
treeb[rt]=sum2[nowr-1]-sum2[nowl-2]+(nowl-nowr-1)*sum1[x-1];
lazyb[rt]=x;
return ;
}
pushdownb(nowl,nowr,rt);
updatab(x,l,r,nowl,md,rt*2);
updatab(x,l,r,md+1,nowr,rt*2+1);
treeb[rt]=treeb[rt*2]+treeb[rt*2+1];
}
int main()
{
int n;
scanf("%d",&n);
for(int i=1; i<=n; i++)
scanf("%d",&a[i]);
for(int i=1; i<=n-1; i++)
{
int x;
scanf("%d",&x);
sum1[i]=sum1[i-1]+x;
sum2[i]=sum2[i-1]+sum1[i];
}
for(int i=0; i<4*maxn; i++)lazya[i]=lazyb[i]=-INF;
bulida(1,n,1);
int T;
scanf("%d",&T);
while(T--)
{
getchar();
char key;
scanf("%c",&key);
if(key=='s')
{
int l,r;
scanf("%d %d",&l,&r);
printf("%lld\n",quera(l,r,1,n,1)+querb(l,r,1,n,1));
}
else if(key=='+')
{
ll x,add;
scanf("%lld %lld",&x,&add);
add=quera(x,x,1,n,1)+querb(x,x,1,n,1)+add;
int st=x,en=n;
while(st!=en)
{
int md=(st+en)/2;
if(sum1[md+1-1]-sum1[x-1]+add>=querb(md+1,md+1,1,n,1)+quera(md+1,md+1,1,n,1))st=md+1;
else en=md;
}
updataa(add,x,st,1,n,1);
updatab(x,x+1,st,1,n,1);
updatabb(0,x,1,n,1);
}
}
return 0;
}
codeforces#1136E. Nastya Hasn't Written a Legend(二分+线段树)的更多相关文章
- cf1136E. Nastya Hasn't Written a Legend(二分 线段树)
题意 题目链接 Sol yy出了一个暴躁线段树的做法. 因为题目保证了 \(a_i + k_i <= a_{i+1}\) 那么我们每次修改时只需要考虑取max就行了. 显然从一个位置开始能影响到 ...
- Codeforces 1136E - Nastya Hasn't Written a Legend - [线段树+二分]
题目链接:https://codeforces.com/problemset/problem/1136/E 题意: 给出一个 $a[1 \sim n]$,以及一个 $k[1 \sim (n-1)]$, ...
- Codeforces 1136E Nastya Hasn't Written a Legend 线段树
vp的时候没码出来.. 我们用set去维护, 每一块区域, 每块区域内的元素与下一个元素的差值刚好为ki,每次加值的时候我们暴力合并, 可以发现我们最多合并O(n)次. 然后写个线段树就没了. #in ...
- Codeforces 1136E Nastya Hasn't Written a Legend (线段树教做人系列)
题意:有一个数组a和一个数组k,数组a一直保持一个性质:a[i + 1] >= a[i] + k[i].有两种操作:1,给某个元素加上x,但是加上之后要保持数组a的性质.比如a[i]加上x之后, ...
- CF1136E Nastya Hasn't Written a Legend(线段树)
还能说什么呢,简直太妙了. $$a_{i+1}<a_i+k_i$$ $$a_{i+1}-k_i-k_{i-1}-\cdots-k_1<a_i+k_i-k_i-k_{i-1}-\cdots- ...
- Educational Codeforces Round 61 D 二分 + 线段树
https://codeforces.com/contest/1132/problem/D 二分 + 线段树(弃用结构体型线段树) 题意 有n台电脑,只有一个充电器,每台电脑一开始有a[i]电量,每秒 ...
- Codeforces Round #620 F2. Animal Observation (hard version) (dp + 线段树)
Codeforces Round #620 F2. Animal Observation (hard version) (dp + 线段树) 题目链接 题意 给定一个nm的矩阵,每行取2k的矩阵,求总 ...
- Codeforces Round #292 (Div. 1) C. Drazil and Park 线段树
C. Drazil and Park 题目连接: http://codeforces.com/contest/516/problem/C Description Drazil is a monkey. ...
- Codeforces Round #254 (Div. 1) C. DZY Loves Colors 线段树
题目链接: http://codeforces.com/problemset/problem/444/C J. DZY Loves Colors time limit per test:2 secon ...
随机推荐
- Kafka面试题
1.如何获取topic主题的列表bin/kafka-topics.sh --list --zookeeper localhost:2181 2.生产者和消费者的命令行是什么?生产者在主题上发布消息:b ...
- 从壹开始前后端分离 [ Vue2.0+.NET Core2.1] 十九║Vue基础: 样式动态绑定+生命周期
回顾 哈喽大家好,前后端分离系列文章又开始了,今天周一,还是感谢大家花时间来观看我写的博客,周末呢,没有写文章,但是也没有闲着,主要是研究了下遗留问题,看过之前文章的应该知道,之前的在AOP使用Red ...
- 死磕 java集合之ConcurrentSkipListMap源码分析——发现个bug
前情提要 点击链接查看"跳表"详细介绍. 拜托,面试别再问我跳表了! 简介 跳表是一个随机化的数据结构,实质就是一种可以进行二分查找的有序链表. 跳表在原有的有序链表上面增加了多级 ...
- 【Android Studio安装部署系列】十四、Android studio移除工程和删除项目
版权声明:本文为HaiyuKing原创文章,转载请注明出处! 概述 Android Studio删除工程.项目的操作步骤. 移除工程 主要用于从最近打开的项目列表中移除.硬盘中还是存在这个项目的. F ...
- MariaDB Galera集群部署--技术流ken
Galera集群介绍 MariaDB集群是MariaDB同步多主机集群.它仅支持XtraDB/ InnoDB存储引擎. 主要功能 同步复制 真正的multi-master,即所有节点可以同时读写数据库 ...
- 云计算OpenStack:云计算介绍及组件安装(一)--技术流ken
云计算介绍 当用户能够通过互联网方便的获取到计算.存储等服务时,我们比喻自己使用到了“云计算”,云计算并不能被称为是一种计算技术,而更像是一种服务模式.每个运维人员心里都有一个对云计算的理解,而最普遍 ...
- FLASHBACK介绍
在介绍flashback之前先介绍下undo_retention相关参数 undo_retention:表示undo数据的过期时间.系统默认这个时间设置为900即15分钟.但要注意,保证undo数据在 ...
- 用jQuery实现切换动态图片
1.实现动态图片的切换只需要改变目标图片的路径
- Spring Boot 2.X 如何添加拦截器?
最近使用SpringBoot2.X搭建了一个项目,大部分接口都需要做登录校验,所以打算使用注解+拦截器来实现,在此记录下实现过程. 一.实现原理 1. 自定义一个注解@NeedLogin,如果接口需要 ...
- Java学习点滴——Class和反射
基于<Java编程思想>第四版 前言 我们要操作一个类实例对象时,一般都要先知道这个类有哪些方法或者成员变量.反射就是在我们不知道这个类有哪些方法或成员变量时,使用特定方式得到类的这些信息 ...