洛谷题目传送门

YCB巨佬对此题有详细的讲解。%YCB%请点这里

思路分析

不能套用静态主席树的方法了。因为的\(N\)个线段树相互纠缠,一旦改了一个点,整个主席树统统都要改一遍。。。。。。

话说我真的快要忘了有一种数据结构,能支持单点修改,区间查询,更重要的是,常数优秀的它专门用来高效维护前缀和!!它就是——

!树状数组!

之前静态主席树要保存的每个线段树\([1,i]\),不也是一个庞大的前缀吗?于是,把树状数组套在线段树上,构成支持动态修改的主席树。每个树状数组的节点即为一个线段树的根节点。

举个栗子,维护一个长度为\(5\)的序列,树状数组实际会长成这样——

于是就利用树状数组来维护前缀和了。首先是修改(设修改元素位置为\(i\))。从下标为\(i\)的树状数组节点开始,每次都往后跳(+=lowbit(i)),所有跳到的线段树都改一遍,原值对应区间-1,新值对应区间+1。一共要改\(log\)棵树。

然后是查询。先把\(l-1\)和\(r\)都往前跳(-=lowbit(i)),每次跳到的都记下来。求当前\(size\)的时候,用记下来的\(log\)棵由\(r\)得到的节点左儿子的\(size\)和(就代表\([1,r]\)的\(size\))减去\(log\)棵由\(l-1\)得到的节点左儿子的\(size\)和(就代表\([1,l-1]\)的\(size\))就是\([l,r]\)的\(size\)。往左/右儿子跳的时候也是\(log\)个节点一起跳。

其实还有一个问题,一开始本蒟蒻想不通,就是\(N\)棵线段树已经无法共用内存了,那空间复杂度不会是\(O(N^2\log N)\)吗?

其实没必要担心的。。。。。。

只考虑修改操作,每次有\(log\)棵线段树被挑出来,每个线段树只修改\(log\)个节点,因此程序一趟跑下来,仅有\(N\log^2N\)个节点被访问过,我们只需要动态开点就好了。

下面贴代码:

#include<cstdio>
#include<cstring>
#include<algorithm>
using namespace std;
#define R register int
const int N=10009,M=4000009;//M:开Nlog²的空间
bool op[N];
int L,P,n,a[N],b[N],c[N],d[N],g[N<<1];
int rt[N],lc[M],rc[M],s[M];
int pl,pr,reql[20],reqr[20];
#define G ch=getchar()
#define GO G;while(ch<'-')G
#define in(z) GO;z=ch&15;G;while(ch>'-')z*=10,z+=ch&15,G
inline void update(R p,R v)//修改
{
R k=lower_bound(g+1,g+L+1,a[p])-g;//先找到离散化后对应值
for(R i=p;i<=n;i+=i&-i)
{
R*t=&rt[i],l=1,r=L,m;
while(l!=r)
{
if(!*t)*t=++P;//动态分配空间
s[*t]+=v;
m=(l+r)>>1;
if(k<=m)r=m,t=&lc[*t];
else l=m+1,t=&rc[*t];
}
if(!*t)*t=++P;
s[*t]+=v;
}
}
inline int ask(R l,R r,R k)
{
R i,m,sum;
pl=pr=0;
for(i=l-1;i;i-=i&-i)
reql[++pl]=rt[i];
for(i=r;i;i-=i&-i)
reqr[++pr]=rt[i];//需要查询的log个线段树全记下来
l=1;r=L;
while(l!=r)
{
m=(l+r)>>1;sum=0;
for(i=1;i<=pr;++i)sum+=s[lc[reqr[i]]];
for(i=1;i<=pl;++i)sum-=s[lc[reql[i]]];//一起加一起减
if(k<=sum)
{
for(i=1;i<=pl;++i)reql[i]=lc[reql[i]];
for(i=1;i<=pr;++i)reqr[i]=lc[reqr[i]];
r=m;
}//一起向同一边儿子跳
else
{
for(i=1;i<=pl;++i)reql[i]=rc[reql[i]];
for(i=1;i<=pr;++i)reqr[i]=rc[reqr[i]];
l=m+1;k-=sum;
}
}
return g[l];
}
int main()
{
register char ch;
R m,i;
in(n);in(m);L=n;
for(i=1;i<=n;++i){in(a[i]);}
memcpy(g,a,(n+1)<<2);
for(i=1;i<=m;++i)
{
GO;op[i]=ch=='Q';
in(b[i]);in(c[i]);
if(op[i]){in(d[i]);}
else g[++L]=c[i];//变成动态的了,离散化时后面需要修改的值也要考虑进去,所以先把所有操作保存起来
}
sort(g+1,g+L+1);
L=unique(g+1,g+L+1)-g-1;//离散化
for(i=1;i<=n;++i)update(i,1);//一开始还是每个点都要更新一遍
for(i=1;i<=m;++i)
{
if(op[i])printf("%d\n",ask(b[i],c[i],d[i]));
else
{
update(b[i],-1);//注意被替代的以前那个值要减掉
a[b[i]]=c[i];
update(b[i],1);
}
}
return 0;
}

洛谷P2617 Dynamic Ranking(主席树,树套树,树状数组)的更多相关文章

  1. 洛谷P2617 Dynamic Rankings (主席树)

    洛谷P2617 Dynamic Rankings 题目描述 给定一个含有n个数的序列a[1],a[2],a[3]--a[n],程序必须回答这样的询问:对于给定的i,j,k,在a[i],a[i+1],a ...

  2. 洛谷P2617 Dynamic Rankings 主席树 单点修改 区间查询第 K 大

    我们将线段树套在树状数组上,查询前预处理出所有要一起移动的节点编号,并在查询过程中一起将这些节点移到左右子树上. Code: #include<cstdio> #include<cs ...

  3. 洛谷 P2617 Dynamic Ranking

    题目描述 给定一个含有n个数的序列a[1],a[2],a[3]……a[n],程序必须回答这样的询问:对于给定的i,j,k,在a[i],a[i+1],a[i+2]……a[j]中第k小的数是多少(1≤k≤ ...

  4. 2018.07.01洛谷P2617 Dynamic Rankings(带修主席树)

    P2617 Dynamic Rankings 题目描述 给定一个含有n个数的序列a[1],a[2],a[3]--a[n],程序必须回答这样的询问:对于给定的i,j,k,在a[i],a[i+1],a[i ...

  5. 洛谷 P2617 Dynamic Rankings || ZOJ - 2112

    写的让人看不懂,仅留作笔记 静态主席树,相当于前缀和套(可持久化方法构建的)值域线段树. 建树方法:记录前缀和的各位置的线段树的root.先建一个"第0棵线段树",是完整的(不需要 ...

  6. 洛谷P2617 Dynamic Rankings

    带修主席树模板题 主席树的单点修改就是把前缀和(大概)的形式改成用树状数组维护,每个树状数组的元素都套了一个主席树(相当于每个数组的元素root[i]都是主席树,且这个主席树维护了(i - lowbi ...

  7. 洛谷 P2617 Dynamic Rankings 解题报告

    P2617 Dynamic Rankings 题目描述 给定一个含有\(n\)个数的序列\(a[1],a[2],a[3],\dots,a[n]\),程序必须回答这样的询问:对于给定的\(i,j,k\) ...

  8. 洛谷$P2617\ Dynamic\ Rankings$ 整体二分

    正解:整体二分 解题报告: 传送门$w$ 阿查询带修区间第$k$小不显然整体二分板子呗,,, 就考虑先按时间戳排序(,,,其实并不需要读入的时候就按着时间戳排的鸭$QwQ$ 每次二分出$mid$先把所 ...

  9. 【小技巧】树剖套线段树优化建图如何做到 O(nlogn)

    前提:用树剖套线段树优化树链连边.例题:bzoj4699 我们说树剖的时间复杂度是 $O(n\times log(n))$,是因为访问一条链时需要经过 $log(n)$ 级别条重链,对于每条重链还需要 ...

随机推荐

  1. centos-安装python3.6环境并配置虚拟环境

    python3.6下载地址:https://www.python.org/ftp/python/3.6.4/Python-3.6.4.tgz linux下python环境配置 统一目录: 源码存放位置 ...

  2. 针对Eclipse的maven Missing artifact com.microsoft.sqlserver:slqjdbc4:jar:4.0

    maven 中添加sqlserver 出错,报错内容 maven Missing artifact com.microsoft.sqlserver 解决方法这里先下载好jar包 ,然后maven命令执 ...

  3. LCA—倍增法求解

    LCA(Least Common Ancestors) 即最近公共祖先,是指在有根树中,找出某两个结点u和v最近的公共祖先. 常见解法一般有三种 这里讲解一种在线算法-倍增 首先我们定义fa[u][j ...

  4. linux 下yum使用技巧

    本文来自我的github pages博客http://galengao.github.io/ 即www.gaohuirong.cn 经常会遇上一些linux系统允许你上外网,而一些是不允许的,这时我们 ...

  5. CSS布局(一) 盒子模型

    一.盒子模型 标准盒子模型 从下图可以看到标准 w3c 盒子模型的范围包括 content.padding.border.margin,并且 content 部分不包含其他部分. 怪异盒子模型 从下图 ...

  6. YUM安装软件

    YUM:介绍.工作流程.本地yum.网络yum.yum的相关命令 一.What is YUM YUM是基于rpm但更胜于rpm的软件管理工具 YUM的优点: 1.更方便的管理rpm软件包 2.自动解决 ...

  7. Elasticsearch-深入理解索引原理

    最近开始大面积使用ES,很多地方都是知其然不知其所以然,特地翻看了很多资料和大牛的文档,简单汇总一篇.内容多为摘抄,说是深入其实也是一点浅尝辄止的理解.希望大家领会精神. 首先学习要从官方开始地址如下 ...

  8. Docker 入门之创建service(一)

    在一个分布式应用中,我们把应用的不同层叫做"Services".比如,一个视频共享应用,它包含存储数据到数据库的服务,用户上载后后台进行的视频解码服务,前端服务等等. 然而,一个服 ...

  9. R实战 第三篇:数据处理

    在实际分析数据之前,必须对数据进行清理和转化,使数据符合相应的格式,提高数据的质量.数据处理通常包括增加新的变量.处理缺失值.类型转换.数据排序.数据集的合并和获取子集等. 一,增加新的变量 通常需要 ...

  10. LVS-DR之VIP、DIP跨网段实例

    在日常应用环境中,我们会遇到这样一种lvs部署环境,所有的dr以及的rs server都在一个局域网环境中,但只有一个公网ip,而又需要将应用发布到internet上,都知道lvs的最好的模式就是所有 ...