Description

给定一个非负整数序列{a},初始长度为N。
有M个操作,有以下两种操作类型:
1、Ax:添加操作,表示在序列末尾添加一个数x,序列的长度N+1。
2、Qlrx:询问操作,你需要找到一个位置p,满足l<=p<=r,使得:
a[p] xor a[p+1] xor ... xor a[N] xor x 最大,输出最大是多少。

Input

第一行包含两个整数 N  ,M,含义如问题描述所示。   
第二行包含 N个非负整数,表示初始的序列 A 。 
接下来 M行,每行描述一个操作,格式如题面所述。  

Output

假设询问操作有 T个,则输出应该有 T行,每行一个整数表示询问的答案。

题意:应该很清楚了;

题解:

①原题中的式子比较假: 化成max( (a[n] xor x)xor a[p-1] ) p∈[l,r];

②前面的now = (a[n] xor x)是一个定值,建立一颗字典树,从高位到低位考虑,一定是尽量选和now的那一位相反的数,对前缀建树,如果类似于普通01字典树,只是把一个数字插入经过的所有节点++,这个可持久的结构维护sum[r]-sum[l-1]第i位的节点值位0或1的个数;

③查询时,从高到低枚举位数j,如果和now的j位相反的数个数在sum[r]-sum[l-1]内存在,则进入这个节点,否则进入另一个节点执行同样操作,每次更新选择的数的j位

    

 #include<cstdio>
#include<iostream>
#include<cstring>
using namespace std;
const int N=,S = ;
int n,m,a[N],b[N],x,rt[N],sz,ch[N*S][],sum[N*S];
char gc(){
static char *p1,*p2,s[];
if(p1==p2) p2=(p1=s)+fread(s,,,stdin);
return(p1==p2)?EOF:*p1++;
}
int rd(){
int x = ; char c = gc();
while(c<''||c>'') c = gc();
while(c>=''&&c<='') x = x * + c - '',c = gc();
return x;
}
bool opt(){
char c = gc();
while(c!='A'&&c!='Q') c = gc();
return c=='A';
}
int ins(int last,int val){
int k,ret; k = ret = ++sz;
for(int i = ;i >= ;i--){
sum[k] = sum[last] + ; ch[k][] = ch[last][]; ch[k][] = ch[last][];
int d = (val>>i)&;
k = ch[k][d] = ++sz; last = ch[last][d];
}
sum[k] = sum[last] + ;
return ret;
}
int query(int k1,int k2,int val){
int ret = ;
for(int i = ;i >= ;i--){
int d = (val>>i)&;
if(sum[ch[k2][d^]]-sum[ch[k1][d^]]>)
ret|=(<<i),k1=ch[k1][d^],k2=ch[k2][d^];
else k1=ch[k1][d],k2=ch[k2][d];
}
return ret;
}
int main()
{ freopen("bzoj3261.in","r",stdin);
freopen("bzoj3261.out","w",stdout);
n = rd()+; m = rd();
rt[]=ins(rt[],b[]);
for(int i = ;i <= n;i++) b[i] = b[i-]^rd(),rt[i]=ins(rt[i-],b[i]);
char s[];
for(int i = ;i <= m;i++){
if(opt()){
n++; b[n]=b[n-]^rd();
rt[n]=ins(rt[n-],b[n]);
}
else {
int l = rd(),r = rd(),x = rd();
int tmp = query(rt[l-],rt[r],b[n]^x);
printf("%d\n",tmp);
}
}
return ;
}//by tkys_Austin;

bzoj 3261最大异或和的更多相关文章

  1. BZOJ 3261: 最大异或和( 可持久化trie )

    搞成前缀和然后就可以很方便地用可持久化trie维护了.时间复杂度O((N+M)*25) -------------------------------------------------------- ...

  2. bzoj 3261: 最大异或和 (可持久化trie树)

    3261: 最大异或和 Time Limit: 10 Sec  Memory Limit: 512 MB Description       给定一个非负整数序列 {a},初始长度为 N.       ...

  3. BZOJ 3261: 最大异或和位置-贪心+可持久化01Trie树

    3261: 最大异或和 Time Limit: 10 Sec  Memory Limit: 512 MBSubmit: 3519  Solved: 1493[Submit][Status][Discu ...

  4. BZOJ 3261: 最大异或和

    Description 一个序列,支持两个操作. 1.在序列尾加入一个数. 2.询问 [l,r] 中与 x 异或值最大的数. \(n\leqslant 3*10^5\) Sol 可持久化 Trie 树 ...

  5. BZOJ 3261 最大异或和(算竞进阶习题)

    可持久化Trie 需要知道一个异或的特点,和前缀和差不多 a[p] xor a[p+1] xor....xor a[n] xor x = a[p-1] xor a[n] xor x 所以我们把a[1. ...

  6. bzoj 3261 最大异或和 可持久化字典树(01树)

    题目传送门 思路: 由异或的性质可得,题目要求的式子可以转化成求$max(pre[n]^x^pre[i])$,$pre[i]$表示前缀异或和,那么我们现在就要求出这个东西,所以用可持久化字典树来求,每 ...

  7. bzoj 3261 最大异或和【可持久化trie】

    因为在后面加数字又求后缀和太麻烦,所以xor[p...n]=xor[1...n]^xor[p-1...n]. 首先处理出来区间异或前缀和,对前缀和建trie树(在最前面放一棵0表示最开始的前缀和 然后 ...

  8. BZOJ 3261 最大异或和 (可持久化01Trie)

    题目大意:让你维护一个序列,支持在序列末插入一个数,支持询问$[l,r]$区间内选择一个位置$p$,使$xor\sum_{i=p}^{n}a_{i}$最大 可持久化$01Trie$裸题,把 区间异或和 ...

  9. 可持久化+Trie || BZOJ 3261最大异或和 || Luogu P4735 最大异或和

    题面:最大异或和 代码: #include<cstdio> #include<cstring> #include<iostream> using namespace ...

随机推荐

  1. 《Language Implementation Patterns》之 符号表

    前面的章节我们学会了如何解析语言.构建AST,如何访问重写AST,有了这些基础,我们可以开始进行"语义分析"了. 在分析语义的一个基本方面是要追踪"符号",符号 ...

  2. javascript 腾讯ABS云平台面试题及面试经历

    既然说到面试前端肯定是Javascript各种问,只好各种答. 面试题肯定离不了,最近热门的Vue.js,React.js,Angular.js,Gulp,Webpack还有各种Js问题,还有令人头痛 ...

  3. Python扩展模块——selenium的使用(定位、下载文件等)

    想全面的使用selenium可以下载<selenium 2自动化测试实战-基于Python语言>PDF的电子书看看 我使用到了简单的浏览器操作,下载文件等功能... 推荐使用firefox ...

  4. List集合就这么简单【源码剖析】

    前言 声明,本文用得是jdk1.8 前一篇已经讲了Collection的总览:Collection总览,介绍了一些基础知识. 现在这篇主要讲List集合的三个子类: ArrayList 底层数据结构是 ...

  5. kubernetes进阶(04)kubernetes的service

    一.service概念 Service是对一组提供相同功能的Pods的抽象,并为它们提供一个统一的入口.借助Service,应用可以方便的实现服务发现与负载均衡,并实现应用的零宕机升级.Service ...

  6. zuul入门(1)zuul 的概念和原理

    一.zuul是什么 zuul 是netflix开源的一个API Gateway 服务器, 本质上是一个web servlet应用. Zuul 在云平台上提供动态路由,监控,弹性,安全等边缘服务的框架. ...

  7. OAuth2.0学习(1-9)新浪开放平台微博认证-web应用授权(授权码方式)

    1. 引导需要授权的用户到如下地址: URL 1 https://api.weibo.com/oauth2/authorize?client_id=YOUR_CLIENT_ID&respons ...

  8. Spring Security 入门(1-1)Spring Security是什么?

    1.Spring Security是什么? Spring Security 是一个安全框架,前身是 Acegi Security , 能够为 Spring企业应用系统提供声明式的安全访问控制. Spr ...

  9. ssh_maven之controller层开发

    我们已经完成了前两层的开发,现在 只剩下我们的controller层了,对于这一层,我们需要创建一个动作类CustomerAction,另外就是我们的strutss.xml以及我们的applicati ...

  10. mangodb的基本操作:增删改差

    MongoDB三元素: 1 数据库: 和关系型数据库中数据库的层次相同,内部可以有多个集合. 2 集合: 相当于关系型数据库中的表,存储若干文档,结构不固定 3 文档: 相当于关系型数据库中的行,是J ...