题意:给定 C,k1, b1, k2 找出所有的(a, b)满足 ak1⋅n+b1+ bk2⋅n−k2+1 = 0 (mod C)(n = 1, 2, 3, ...)  (1<=a, b <C)

1.  当n = 1时, a^(k1+b1) + b = 0 ( mod C)   => a^(2 * k1+b1) + b*a^(k1) = 0 ( mod C)     ①

当n = 2时, a^(2 * k1 + b1) + b^(k2 + 1) = 0 (mod C)       ②

所以  ① ,②结合  可以推出 b^(k2) = a^(k1)

所以求出 a ,b再判断是否符合本式即可

#include <stdio.h>
#include <string.h>
#include <iostream>
#include <algorithm>
#include <vector>
#include <queue>
#include <set>
#include <map>
#include <string>
#include <math.h>
#include <stdlib.h>
#include <time.h>
using namespace std;
typedef long long ll; ll pow_mod(int a,int n,int mod)
{
if(n == 0)
return 1;
ll x = pow_mod(a,n/2,mod);
ll ans = (ll)x*x%mod;
if(n %2 == 1)
ans = ans *a % mod;
return ans;
} int main()
{
int b1,k1,k2,mod;
int cas = 1;
while(scanf("%d%d%d%d",&mod,&k1,&b1,&k2) != EOF)
{
bool flag = false;
printf("Case #%d:\n",cas++);
for(int i = 1; i < mod; i++)
{
ll tmp = pow_mod(i,k1+b1,mod);
int b = mod - tmp;
ll tta = pow_mod(i,k1,mod);
ll ttb = pow_mod(b,k2,mod);
if(tta == ttb)
{
flag = true;
printf("%d %d\n",i,b);
}
}
if(!flag)
printf("-1\n");
}
return 0;
} 2. 求出1 - c所有的a ,b 的情况,再枚举n进行判断,但感觉不是很靠谱- - #include <stdio.h>
#include <string.h>
#include <iostream>
#include <algorithm>
#include <vector>
#include <queue>
#include <set>
#include <map>
#include <string>
#include <math.h>
#include <stdlib.h>
#include <time.h>
using namespace std;
typedef long long ll; ll pow_mod(ll a,ll n,ll mod)
{
if(n == 0)
return 1;
ll x = pow_mod(a,n/2,mod);
ll ans = (ll)x*x%mod;
if(n %2 == 1)
ans = ans *a % mod;
return ans;
} int main()
{
ll b1,k1,k2;
ll mod;
int cas = 1;
while(scanf("%I64d%I64d%I64d%I64d",&mod,&k1,&b1,&k2) != EOF)
{
bool flag = true;
int ok;
printf("Case #%d:\n",cas++);
for(ll i = 1; i < mod; i++)
{
ll temp = pow_mod(i,k1+b1,mod);
ll b = (temp/mod + 1)*mod - temp;
ok = 1;
for(ll j = 2; j <= 100; j++)
{
ll ans1 = pow_mod(i, k1 * j + b1, mod);
ll ans2 = pow_mod(b, k2 * j - k2 + 1, mod);
ll ans = (ans1+ans2)%mod;
if(ans)
{
ok = 0;
break;
}
}
if(ok)
{
flag = 0;
printf("%I64d %I64d\n",i,b);
}
}
if(flag)
printf("-1\n");
}
return 0;
}

  

hdu 5478 (数论)的更多相关文章

  1. 2015上海网络赛 HDU 5478 Can you find it 数学

    HDU 5478 Can you find it 题意略. 思路:先求出n = 1 时候满足条件的(a,b), 最多只有20W对,然后对每一对进行循环节判断即可 #include <iostre ...

  2. GCD and LCM HDU 4497 数论

    GCD and LCM HDU 4497 数论 题意 给你三个数x,y,z的最大公约数G和最小公倍数L,问你三个数字一共有几种可能.注意123和321算两种情况. 解题思路 L代表LCM,G代表GCD ...

  3. HDU 5478 Can you find it 随机化 数学

    Can you find it Time Limit: 1 Sec Memory Limit: 256 MB 题目连接 http://acm.hdu.edu.cn/showproblem.php?pi ...

  4. HDU 4497 数论+组合数学

    题目链接: http://acm.hdu.edu.cn/showproblem.php?pid=4497 解题思路:将满足条件的一组x,z,y都除以G,得到x‘,y',z',满足条件gcd(x',y' ...

  5. hdu 4542 数论 + 约数个数相关 腾讯编程马拉松复赛

    题目:http://acm.hdu.edu.cn/showproblem.php?pid=4542 小明系列故事--未知剩余系 Time Limit: 500/200 MS (Java/Others) ...

  6. hdu 4961 数论?

    http://acm.hdu.edu.cn/showproblem.php?pid=4961 给定ai数组; 构造bi, k=max(j | 0<j<i,a j%ai=0), bi=ak; ...

  7. hdu 1664(数论+同余搜索+记录路径)

    Different Digits Time Limit: 10000/4000 MS (Java/Others)    Memory Limit: 32768/32768 K (Java/Others ...

  8. hdu 3641 数论 二分求符合条件的最小值数学杂题

    http://acm.hdu.edu.cn/showproblem.php?pid=3641 学到: 1.二分求符合条件的最小值 /*================================= ...

  9. hdu 4059 数论+高次方求和+容斥原理

    http://acm.hdu.edu.cn/showproblem.php? pid=4059 现场赛中通过率挺高的一道题 可是容斥原理不怎么会.. 參考了http://blog.csdn.net/a ...

随机推荐

  1. Android webview Mixed Content无法显示图片解决

    转自:http://blog.csdn.net/crazy_zihao/article/details/51557425 前言 在使用WebView加载https资源文件时,如果认证证书不被Andro ...

  2. 偶遇vue-awesome-swiper的坑

    最近用vue重构一个移动端的项目,碰到了不少坑,今天拿移动端最著名的轮播插件swiper为例来说,由于这个项目没用UI库,纯手写的样式,沿用老的插件,自然而然的选择了vue-awesome-swipe ...

  3. MongoDB启动客户端和服务端

    要在MongoDB安装(我安装在D盘)的目录的根目录下,先建data目录,然后data目录下再建db目录(结果:D:\data\db). 然后cmd进入bin目录,执行.\mongod.exe启动服务 ...

  4. JAVA_SE基础——21.二维数组的定义

    2 二维数组的定义 基本与一维数组类似 //定义一个3行5列的二维数组 //方法1,先new对象,然后再初始化每个元素 int[][] a = new int[3][5]; a[0][0]=1; a[ ...

  5. Spring Cache扩展:注解失效时间+主动刷新缓存(二)

    *:first-child { margin-top: 0 !important; } body > *:last-child { margin-bottom: 0 !important; } ...

  6. 智能合约语言 Solidity 教程系列9 - 错误处理

    这是Solidity教程系列文章第9篇介绍Solidity 错误处理. Solidity系列完整的文章列表请查看分类-Solidity. 写在前面 Solidity 是以太坊智能合约编程语言,阅读本文 ...

  7. SLF4J - 一个允许你统一日志记录API的抽象层

    一.什么是SLF4J 我们在做Java开发时,如果需要记录日志,有很多日志API可供选择,如: java.util.logging Apache log4j logback SLF4J又是个什么东东呢 ...

  8. bootstrap 之下拉多选

    效果如图: 一.HTML代码 <label class="col-sm-1 control-label text-right" for="ds_host" ...

  9. Bootstrap 栅格系统简单整理

    Bootstrap内置了一套响应式.移动设备优先的流式栅格系统,随着屏幕设备或视口(viewport)尺寸的增加,系统会自动分为最多12列. 总结一下我近期的学习Bootstrap的一些理解: 一.. ...

  10. 其实你并不懂如何定义一个 PHP 函数

    <?php function divide($dividend, $divisor){ return $dividend / $divisor; } echo divide(12, 4); ec ...