hdu 5478 (数论)
题意:给定 C,k1, b1, k2 找出所有的(a, b)满足 ak1⋅n+b1+ bk2⋅n−k2+1 = 0 (mod C)(n = 1, 2, 3, ...) (1<=a, b <C)
1. 当n = 1时, a^(k1+b1) + b = 0 ( mod C) => a^(2 * k1+b1) + b*a^(k1) = 0 ( mod C) ①
当n = 2时, a^(2 * k1 + b1) + b^(k2 + 1) = 0 (mod C) ②
所以 ① ,②结合 可以推出 b^(k2) = a^(k1)
所以求出 a ,b再判断是否符合本式即可
#include <stdio.h>
#include <string.h>
#include <iostream>
#include <algorithm>
#include <vector>
#include <queue>
#include <set>
#include <map>
#include <string>
#include <math.h>
#include <stdlib.h>
#include <time.h>
using namespace std;
typedef long long ll; ll pow_mod(int a,int n,int mod)
{
if(n == 0)
return 1;
ll x = pow_mod(a,n/2,mod);
ll ans = (ll)x*x%mod;
if(n %2 == 1)
ans = ans *a % mod;
return ans;
} int main()
{
int b1,k1,k2,mod;
int cas = 1;
while(scanf("%d%d%d%d",&mod,&k1,&b1,&k2) != EOF)
{
bool flag = false;
printf("Case #%d:\n",cas++);
for(int i = 1; i < mod; i++)
{
ll tmp = pow_mod(i,k1+b1,mod);
int b = mod - tmp;
ll tta = pow_mod(i,k1,mod);
ll ttb = pow_mod(b,k2,mod);
if(tta == ttb)
{
flag = true;
printf("%d %d\n",i,b);
}
}
if(!flag)
printf("-1\n");
}
return 0;
} 2. 求出1 - c所有的a ,b 的情况,再枚举n进行判断,但感觉不是很靠谱- - #include <stdio.h>
#include <string.h>
#include <iostream>
#include <algorithm>
#include <vector>
#include <queue>
#include <set>
#include <map>
#include <string>
#include <math.h>
#include <stdlib.h>
#include <time.h>
using namespace std;
typedef long long ll; ll pow_mod(ll a,ll n,ll mod)
{
if(n == 0)
return 1;
ll x = pow_mod(a,n/2,mod);
ll ans = (ll)x*x%mod;
if(n %2 == 1)
ans = ans *a % mod;
return ans;
} int main()
{
ll b1,k1,k2;
ll mod;
int cas = 1;
while(scanf("%I64d%I64d%I64d%I64d",&mod,&k1,&b1,&k2) != EOF)
{
bool flag = true;
int ok;
printf("Case #%d:\n",cas++);
for(ll i = 1; i < mod; i++)
{
ll temp = pow_mod(i,k1+b1,mod);
ll b = (temp/mod + 1)*mod - temp;
ok = 1;
for(ll j = 2; j <= 100; j++)
{
ll ans1 = pow_mod(i, k1 * j + b1, mod);
ll ans2 = pow_mod(b, k2 * j - k2 + 1, mod);
ll ans = (ans1+ans2)%mod;
if(ans)
{
ok = 0;
break;
}
}
if(ok)
{
flag = 0;
printf("%I64d %I64d\n",i,b);
}
}
if(flag)
printf("-1\n");
}
return 0;
}
hdu 5478 (数论)的更多相关文章
- 2015上海网络赛 HDU 5478 Can you find it 数学
HDU 5478 Can you find it 题意略. 思路:先求出n = 1 时候满足条件的(a,b), 最多只有20W对,然后对每一对进行循环节判断即可 #include <iostre ...
- GCD and LCM HDU 4497 数论
GCD and LCM HDU 4497 数论 题意 给你三个数x,y,z的最大公约数G和最小公倍数L,问你三个数字一共有几种可能.注意123和321算两种情况. 解题思路 L代表LCM,G代表GCD ...
- HDU 5478 Can you find it 随机化 数学
Can you find it Time Limit: 1 Sec Memory Limit: 256 MB 题目连接 http://acm.hdu.edu.cn/showproblem.php?pi ...
- HDU 4497 数论+组合数学
题目链接: http://acm.hdu.edu.cn/showproblem.php?pid=4497 解题思路:将满足条件的一组x,z,y都除以G,得到x‘,y',z',满足条件gcd(x',y' ...
- hdu 4542 数论 + 约数个数相关 腾讯编程马拉松复赛
题目:http://acm.hdu.edu.cn/showproblem.php?pid=4542 小明系列故事--未知剩余系 Time Limit: 500/200 MS (Java/Others) ...
- hdu 4961 数论?
http://acm.hdu.edu.cn/showproblem.php?pid=4961 给定ai数组; 构造bi, k=max(j | 0<j<i,a j%ai=0), bi=ak; ...
- hdu 1664(数论+同余搜索+记录路径)
Different Digits Time Limit: 10000/4000 MS (Java/Others) Memory Limit: 32768/32768 K (Java/Others ...
- hdu 3641 数论 二分求符合条件的最小值数学杂题
http://acm.hdu.edu.cn/showproblem.php?pid=3641 学到: 1.二分求符合条件的最小值 /*================================= ...
- hdu 4059 数论+高次方求和+容斥原理
http://acm.hdu.edu.cn/showproblem.php? pid=4059 现场赛中通过率挺高的一道题 可是容斥原理不怎么会.. 參考了http://blog.csdn.net/a ...
随机推荐
- iOS中CocoaPods的安装及错误详解
什么是CocoaPods CocoaPods是OS X和iOS下的一个第三类库管理工具,通过CocoaPods工具我们可以为项目添加被称为"Pods"的依赖库(这些类库必须是Coc ...
- 【iOS】swift init构造器
这几天在使用 Swift 重写原来的一个运动社交应用 SportJoin. 为什么要重写呢? 首先因为实在找不到设计师给我作图; 其次, 我也闲不下来, 想找一些项目做, 所以只好将原来的代码重写了. ...
- python之路--day13-模块
1,什么是模块 模块就是系统功能的集合体,在python中,一个py文件就是一个模块, 例如:module.py 其中module叫做模块名 2,使用模块 2.1 import导入模块 首次带入模块发 ...
- 基于 Java NIO 实现简单的 HTTP 服务器
1.简介 本文是上一篇文章实践篇,在上一篇文章中,我分析了选择器 Selector 的原理.本篇文章,我们来说说 Selector 的应用,如标题所示,这里我基于 Java NIO 实现了一个简单的 ...
- sts中maven
建立一个maven web的工程 网上有很多关于maven的下载,配置等,我这里就不多说了. 下面介绍主要介绍关于在sts中建立一个maven时最开始出现的错误问题. 创建maven工程 file-& ...
- 新概念英语(1-3)Sorry, sir
Does the man get his umbrella back? A:My coat and my umbrella please. B:Here is my ticket. A:Thank y ...
- 使用Spring Initializr创建项目
Spring initializr 是Spring 官方提供的一个很好的工具,可以用来用来创建一个Spring boot 的项目.可以选择使用Maven管理或者使用Gradle管理,还可以选择使用的编 ...
- Linux中的重启命令
1.系统重启: shutdowm 该命令安全地将系统关机. 有些用户会使用直接断掉电源的方式来关闭linux,这是十分危险的.因为linux与windows不同,其后台运行着许多进程,所以强制关 ...
- H5 仿ios select滚动选择器。框架。
官网上描述的很详细,并且开源,轻量. 有兴趣的可以去尝试官网上的demo写的也很好,并且每个参数也解释的很详细. http://zhoushengfe.com/iosselect/website/in ...
- python判断素数的方法
#运用python的数学函数 import math def isPrime(n): if n <= 1: return False for i in range(2, int(math.sqr ...