题目描述

有一个长度为\(n(n\le 10^5)\)的数列,在模\(M\)意义下进行\(m(m \le50000)\)次操作,每次操作形如以下两种形式:

1 \(x\) 表示每个数加\(x(0 \le x<M)\);

2 表示每个数对模数\(M\)取逆元,保证逆元存在。

输出每次操作后所有数的和,对\(M\)取模。这里\(M=998244353\)。

简要题解

设原始数列为\(x_i\)。对于一个初始的数\(x\),经过第i个操作后一定可以写成\(\dfrac {a_i \times x+b_i} {c_i \times x+d_i}\)的形式。先用线性时间求出参量\(a_i,b_i,c_i,d_i\),于是问题转化为对每个\(i\),求出\(\displaystyle \sum\limits_{j = 1}^n {\frac{{{a_i}{x_j} + {b_i}}}{{{c_i}x_j + {d_i}}}} \)。先将整数提取出来,只需考虑\(\displaystyle \sum\limits_{j = 1}^n {\frac{{e_i}}{{{c_i}x_j + {d_i}}}} \)。

(1)若\(c_i=0\),则直接计算即可;

(2)否则,对每个\(i\)可以归一化为求\(\displaystyle \sum\limits_{j = 1}^n {\frac{{{1}}}{{{x_j} + {t_i}}}} \)。

将分母通分,则转化为\(\dfrac {P(t_i)} {Q(t_i)}\),其中\(P,Q\)为\(t_i\)的不超过\(n\)次多项式。

这里\(Q(x)=(x+x_1) \cdots (x+x_n)\)。考虑如何快速求出\(P\)。不难发现\(P\)正是\(Q\)的导数。

于是问题转化成了多点求值问题。可在\(O(n(\log n)^2+m(\log m)^2)\)时间复杂度求解。

还应注意到不会出现\(P(t_i)=Q(t_i)=0\)的情况,因为根据洛必达法则,此时极限趋于无穷大,不会是有限值,而题目保证了逆元存在。

说明

最近看了大量多项式应用的问题,绝大多数都是多项式逆元,这是见到的第一道应用多项式的多点求值的问题(非裸题),搞明白后不禁感叹:好题啊!佩服出题人系列。

核心代码

 int x[], y[], w[], k[];
int ans1[], ans2[];
int main()
{
int n, m, op, t, sum = ;
scanf("%d%d", &n, &m);
for (int i = ; i < n; i++){
scanf("%d", &x[i]);
sum = add(sum, x[i]);
x[i] = -x[i];
}
vector<Poly> v();
mulInit(, n, x, v);
Poly q = v[], p = diff(q);
int a = , b = , c = , d = , cnt = ;
for (int i = ; i < m; i++){
scanf("%d", &op);
if (op == ){
scanf("%d", &t);
a = add(a, mul(t, c));
b = add(b, mul(t, d));
}
else{ swap(a, c); swap(b, d); }
if (c){
int t = power(c, MOD - );
w[i] = mul(mul(a, t), n);
k[i] = mul(sub(b, mul(a, mul(d, t))), t);
y[cnt++] = mul(d, t);
}
else{
int t = power(d, MOD - );
w[i] = mul(add(mul(a, sum), mul(b, n)), t);
k[i] = -;
}
}
mulInit(, cnt, y, v);
getVal(, cnt, p, v, ans1);
getVal(, cnt, q, v, ans2);
for (int i = , j = ; i < m; i++){
if (k[i] == -)printf("%d\n", w[i]);
else{
int t = mul(ans1[j], power(ans2[j], MOD - ));
printf("%d\n", add(w[i], mul(k[i], t)));
j++;
}
}
}

UOJ182 a^-1 + b problem 解题报告的更多相关文章

  1. codeforces B. Routine Problem 解题报告

    题目链接:http://codeforces.com/problemset/problem/337/B 看到这个题目,觉得特别有意思,因为有熟悉的图片(看过的一部电影).接着让我很意外的是,在纸上比划 ...

  2. HDU p1294 Rooted Trees Problem 解题报告

    http://www.cnblogs.com/keam37/p/3639294.html keam所有 转载请注明出处 Problem Description Give you two definit ...

  3. Winter-2-STL-D The Blocks Problem 解题报告及测试数据

    Time Limit:3000MS     Memory Limit:0KB Description Background Many areas of Computer Science use sim ...

  4. 洛谷1303 A*B Problem 解题报告

    洛谷1303 A*B Problem 本题地址:http://www.luogu.org/problem/show?pid=1303 题目描述 求两数的积. 输入输出格式 输入格式: 两个数 输出格式 ...

  5. [poj 2480] Longge's problem 解题报告 (欧拉函数)

    题目链接:http://poj.org/problem?id=2480 题目大意: 题解: 我一直很欣赏数学题完美的复杂度 #include<cstring> #include<al ...

  6. 【LeetCode】365. Water and Jug Problem 解题报告(Python)

    作者: 负雪明烛 id: fuxuemingzhu 个人博客: http://fuxuemingzhu.cn/ 目录 题目描述 题目大意 解题方法 数学题 相似题目 参考资料 日期 题目地址:http ...

  7. codeforces 798C.Mike and gcd problem 解题报告

    题目意思:给出一个n个数的序列:a1,a2,...,an (n的范围[2,100000],ax的范围[1,1e9] ) 现在需要对序列a进行若干变换,来构造一个beautiful的序列: b1,b2, ...

  8. Facebook Hacker Cup 2014 Qualification Round 竞赛试题 Square Detector 解题报告

    Facebook Hacker Cup 2014 Qualification Round比赛Square Detector题的解题报告.单击这里打开题目链接(国内访问需要那个,你懂的). 原题如下: ...

  9. codeforces 476C.Dreamoon and Sums 解题报告

    题目链接:http://codeforces.com/problemset/problem/476/C 题目意思:给出两个数:a 和 b,要求算出 (x/b) / (x%b) == k,其中 k 的取 ...

随机推荐

  1. 解决Visual Studio 2017隐藏“高级保存选项”命令

    Visual Studio提供高级保存选项功能,它能指定特定代码文件的编码规范和行尾所使用的换行符.在Visual Studio 2017中,该命令没有默认显示在“文件”菜单中.用户需要手工设置,才能 ...

  2. JVM terminated. Exit code=8096

    http://www-01.ibm.com/support/docview.wss?uid=swg21303648 Technote (troubleshooting) Problem(Abstrac ...

  3. javaScript(2)---简单使用

    javaScript(2)---简单使用 学习要点: 1.创建一张HTML页面 2.<Script>标签解析 3.JS代码嵌入的一些问题 一.创建一张HTML页面 <!DOCTYPE ...

  4. SQL性能分析之执行计划

    一直想找一些关于SQL语句性能调试的权威参考,但是有参考未必就能够做好调试的工作.我深信实践中得到的经验是最珍贵的,书本知识只是一个引导.本篇来源于<Inside Microsoft SQL S ...

  5. java之Hibernate框架实现数据库操作

    之前我们用一个java类连接MySQL数据库实现了数据库的增删改查操作---------MySQL篇: 但是数据库种类之多,除了MySQL,还有Access.Oracle.DB2等等,而且每种数据库语 ...

  6. Android 源码中的设计模式

    最近看了一些android的源码,发现设计模式无处不在啊!感觉有点乱,于是决定要把设计模式好好梳理一下,于是有了这篇文章. 面向对象的六大原则 单一职责原则 所谓职责是指类变化的原因.如果一个类有多于 ...

  7. hadoop环境运行程序出现 Retrying connect to server 问题

    程序运行时出现如下问题: 从网上查资料,有说重启format的..有说/etc/hosts出问题的... 反正都试了一遍..还是有这个问题 后来看日志,发现问题是访问服务器9001端口访问不到..开始 ...

  8. Python3实现ICMP远控后门(上)_补充篇

    ICMP后门(上)补充篇 前言 在上一篇文章Python3实现ICMP远控后门(上)中,我简要讲解了ICMP协议,以及实现了一个简单的ping功能,在文章发表之后,后台很多朋友留言,说对校验和的计算不 ...

  9. 学习AD、DA的体会

    AD转换器的转换是指模拟信号输入转化为数字信号输出,而DA转换器是把数字信号转换为模拟信号,在ADC0832.TLC549和TLC5615程序设计中,通过使用中断服务函数每0.5s对ADC0832进行 ...

  10. cnblog 模板 SimpleMemory 个性化设置代码备份

    /页面顶部作者名/ blogTitle h1 { font-size: 50px; margin-top: 0px; } /页面简介/ blogTitle h2 { letter-spacing: 1 ...