【Floyd】BZOJ1491: [NOI2007]社交网络
Description

Solution
n<=100自然联想Floyd
设两个数组d[n][n]存最短距离,t[n][n]存最短路径条数
更新d的时候顺便更新t,乘法原理
if(d[i][j]>d[i][k]+d[k][j]){
d[i][j]=d[i][k]+d[k][j];
t[i][j]=t[i][k]*t[k][j];
}
else if(d[i][j]==d[i][k]+d[k][j])
t[i][j]+=t[i][k]*t[k][j];
再统计答案
if(d[i][j]==d[i][k]+d[k][j])
c[k]+=(double)(t[i][k]*t[k][j])/t[i][j];
感觉Floyd也就能做这些事。。
Code
#include<cstdio>
#include<algorithm>
#include<cstring>
#define ll long long
const int maxn=; ll d[maxn][maxn],t[maxn][maxn];
int n,m;
double c[maxn]; int main(){
scanf("%d%d",&n,&m);
int u,v,w;
memset(d,/,sizeof(d));
for(int i=;i<=n;i++)
d[i][i]=,t[i][i]=; for(int i=;i<=m;i++){
scanf("%d%d%d",&u,&v,&w);
if(w<d[u][v]){
d[u][v]=d[v][u]=w;
t[u][v]=t[v][u]=;
}
else if(w==d[u][v]){
t[u][v]++;
t[v][u]++;
}
} for(int k=;k<=n;k++)
for(int i=;i<=n;i++)
for(int j=;j<=n;j++)if(i!=j&&i!=k&&j!=k){
if(d[i][j]>d[i][k]+d[k][j]){
d[i][j]=d[i][k]+d[k][j];
t[i][j]=t[i][k]*t[k][j];
}
else if(d[i][j]==d[i][k]+d[k][j])
t[i][j]+=t[i][k]*t[k][j];
} memset(c,,sizeof(c));
for(int i=;i<=n;i++)
for(int j=;j<=n;j++)
for(int k=;k<=n;k++)if(i!=j&&i!=k&&j!=k){
if(d[i][j]!=d[i][k]+d[k][j]) continue;
c[k]+=(double)t[i][k]*t[k][j]/t[i][j];
} for(int i=;i<=n;i++)
printf("%.3lf\n",c[i]);
return ;
}
【Floyd】BZOJ1491: [NOI2007]社交网络的更多相关文章
- [BZOJ1491][NOI2007]社交网络 floyd
1491: [NOI2007]社交网络 Time Limit: 10 Sec Memory Limit: 64 MBSubmit: 2196 Solved: 1170[Submit][Status ...
- BZOJ1491: [NOI2007]社交网络(Floyd 最短路计数)
Time Limit: 10 Sec Memory Limit: 64 MBSubmit: 2343 Solved: 1266[Submit][Status][Discuss] Descripti ...
- BZOJ1491 [NOI2007]社交网络 【floyd】
题目 在社交网络(socialnetwork)的研究中,我们常常使用图论概念去解释一些社会现象.不妨看这样的一个问题. 在一个社交圈子里有n个人,人与人之间有不同程度的关系.我们将这个关系网络对应到一 ...
- BZOJ1491: [NOI2007]社交网络
传送门 最短路计数问题.因为数据量非常小($N \leq 100$),所以Floyd随便搞搞就行了. $f[i][j]$表示路径长度,$g[i][j]$表示最短路方案数. 先跑一遍裸的Floyd,然后 ...
- BZOJ1491 [NOI2007]社交网络[最短路计数]
$n$非常的小,结合题目计算式可以想到$O(n^3)$暴枚$s,t,v$,看$v$在不在$s\to t$最短路上($dis_{s,v}+dis_{v,t}=dis_{s,v}$是$v$在两点最短路上的 ...
- 洛谷P2047||bzoj1491 [NOI2007]社交网络
https://www.luogu.org/problemnew/show/P2047 https://www.lydsy.com/JudgeOnline/problem.php?id=1491 也可 ...
- 【BZOJ1491】[NOI2007]社交网络 Floyd
[BZOJ1491][NOI2007]社交网络 Description 在社交网络(socialnetwork)的研究中,我们常常使用图论概念去解释一些社会现象.不妨看这样的一个问题. 在一个社交圈子 ...
- 图论(floyd算法):NOI2007 社交网络
[NOI2007] 社交网络 ★★ 输入文件:network1.in 输出文件:network1.out 简单对比 时间限制:1 s 内存限制:128 MB [问题描述] 在社交网络( ...
- BZOJ 1491: [NOI2007]社交网络( floyd )
floyd...求最短路时顺便求出路径数. 时间复杂度O(N^3) ------------------------------------------------------------------ ...
随机推荐
- IT轮子系列(三)——如何给返回类型添加注释——Swagger的使用(二)
前言 一般对外提供API,都会统一一个返回类型,比如所有的接口都统一返回HttpResponseMessage.这样当我们在方法上添加///注释时,是无法清楚的知道都返回字段都又那些以及它们的数据类型 ...
- TopShelf安装多实例
Topshelf 安装多实例命令: .\ConsoleApp1.exe -instance "newinstallname" install 多实例有一个好处就是容灾,当一个服务部 ...
- Android Selector原理
android的selector对于android开发者而言再熟悉不过了,只要定义一个drawable目录下定义一个selector的xml文件,在布局文件中引用这个xml文件或者在代码中setBac ...
- nslookup查询结果详解
nslookup可以指定查询的类型,可以查到DNS记录的生存时间还可以指定使用那个DNS服务器进行解释.在已安装TCP/IP协议的电脑上面均可以使用这个命令.主要用来诊断域名系统 (DNS) 基础结构 ...
- macOS High Sierra Terminal巨卡问题的解决
输入命令特别卡,拖拽窗口也特别卡,想到可能和界面渲染有关系,到设置里面把不透明度调成满值,问题解决. 真正的技术原因是看iOS开发相关的书的时候,书里面有这方面渲染消耗的提示说明.
- 关于Apple开发者的D-U-N-S Number
企业开发者需要这个信息,中文译名叫邓白氏编码,很多攻略给的那个申请地址已经失效,这个组织官方也有地址可以提交申请资料,不过得注册,苹果目前可用的地址是:https://developer.apple. ...
- Java 包装类笔记
@(JDK)[包装类] Java 包装类笔记 当需要使用到集合的时候,如果是基础数据类型,需要转换为包装类,再使用,在JDK1.5之前,每次使用的时候,都需要手动转换为包装类(称为装箱),然后在使用的 ...
- win10装ubuntu双系统
由于在win下进行web开发出现各种问题相当头疼. 所以今天折腾了一天想装个ubuntu,查看了网上好多教程,不得不说,网上的人很多都是不负责任的,教程都是过时根本就不负责任,关键的地方一笔带过,简单 ...
- eclipse springmvc+Thymeleaf
修改pom.xml引入Thymeleaf相关包: <project xmlns="http://maven.apache.org/POM/4.0.0" xmlns:xsi=& ...
- Oracle-10:分析函数
------------吾亦无他,唯手熟尔,谦卑若愚,好学若饥------------- 分析函数: 分析函数,可以修改排序的规则!!!!!!!!!!!!!!!!!!!!!!!! 首先把数据库脚本给放 ...