【HEOI 2018】Day2 T2 林克卡特树
题目大意:
给一个n个节点的树,然后将其分成k+1个联通块,再在每个联通块取一条路径,将其连接起来,求连接起来的路径最大权值。
题解:
考场只会20分,还都打挂了……
60分的做法其实并不难,nk DP即可,设$f(i,j,0/1/2)$表示i子树选取了j个联通块,i这个节点连了0/1/2条边时的最优解。
100分的做法就是60分做法的拓展。
很容易想到一件事,就是以联通块数为x轴,最优解为y轴,那么这个图像应该是一个单峰上凸函数。同时该离散函数每相邻两点间的斜率是递减的:因为考虑当前联通块数为a,则当联通块数为a+1时,必然是在a时最优解上再连接一段新切出的可空路径并割去一部分可空路径,当补上一条新路径时,我们很容易知道这次补上的路径-割去路径一定小于以前做的同样操作(最优性)。
这样我们发现斜率是具有单调性的(即单调减)。那么我们二分这个斜率,并将原图像减去这个斜率对应的正比例函数,会发现,新图像将会在这个斜率对应点的位置最高,同时也是一个斜率递减函数。
那么我们考虑如何求出此时的答案:新图像上的最高点权值+新图像上最高点联通块数*斜率。
我们考虑这个东西怎么求。
设二元组$f(i,0/1/2)$表示i节点连了0/1/2条边时的最优解和其联通块数(尽量小)。特别的没有连边的i,算为一个联通块,2为0/1/2这三个状态的最优解。
考虑这个东西怎么转移:
假设已经得到子节点v的答案。
对于$f(x,2)$,我们有三种选择,1.保持原来不变,把$f(v,2)$加上;2.由$f(x,1)$和$f(v,1)$合并;3.由$f(x,1)和f(v,0)$合并。
$f(x,1)$,我们同样有三种选择,大体同上者。
$f(x,0)$,我们只有一种选择,即和$f(v,2)$结合。
我们以$f(x,2)$为例:对于第一种情况,联通块数不变直接合并即可,对于第二种情况联通块数减少1,第三种情况同样减少了1个联通块。
得到结果以后比较k+1与最优解对应的联通块数,大于则说明斜率过小,否则说明斜率还可能更大。
代码:
#include "bits/stdc++.h" using namespace std; inline int read(){
int s=,k=;char ch=getchar();
while (ch<''|ch>'') ch=='-'?k=-:,ch=getchar();
while (ch>&ch<='') s=s*+(ch^),ch=getchar();
return s*k;
} typedef long long ll; const int N=3e5+; struct edges{
int v,w;edges *last;
}edge[N<<],*head[N];int cnt; inline void push(int u,int v,int w) {
edge[++cnt]=(edges){v,w,head[u]},head[u]=edge+cnt;
} int n,k;
ll slope;
const ll inf=1e15; struct node {
ll val,num;
node(){val=num=;}
node(ll v,ll nm):val(v),num(nm){}
inline ll &operator [](int x){
return x?num:val;
}
inline void max(node a){
if(a[]>val||(a[]==val&&a[]<num))
(*this)=a;
}
inline void add(node a,node b){
if (a[]==-inf||a[]==-inf) return ;
a[]+=b[],a[]+=b[];
max(a);
}
inline void add(node a,node b,int w,int opt){
if(a[]==-inf||b[]==-inf) return ;
a[]+=b[]-opt,a[]+=b[]+w+slope*opt;
if(a[]<=) return ;
max(a);
}
inline node fa(){
return node(val-slope,num+);
}
}f[N][]; inline void dp(int x,int fa){
f[x][]=f[x][]=f[x][]=node();
f[x][][]=f[x][][]=-inf;
for (edges *i=head[x];i;i=i->last) if(i->v!=fa) {
dp(i->v,x);
f[x][].add(f[x][],f[i->v][]);
f[x][].add(f[x][],f[i->v][],i->w,);
f[x][].add(f[x][],f[i->v][],i->w,);
f[x][].add(f[x][],f[i->v][]);
f[x][].add(f[x][],f[i->v][],i->w,);
f[x][].add(f[x][],f[i->v][],i->w,-);
f[x][].add(f[x][],f[i->v][]);
}
f[x][].max(f[x][]);
f[x][].max(f[x][]);
f[x][].max(f[x][].fa());
} int main(){
n=read(),k=read()+;
for (int i=;i<n;++i) {
int a=read(),b=read(),w=read();
push(a,b,w),push(b,a,w);
}
ll l=-1e12,r=1e12;
node now;
ll ans=;
while (l<=r) {
slope=l+r>>;
dp(,);
now=f[][];
if(now[]<=k)
ans=now[]+slope*k,r=slope-;
else l=slope+;
}
printf("%lld\n",ans);
}
【HEOI 2018】Day2 T2 林克卡特树的更多相关文章
- [八省联考2018]林克卡特树lct——WQS二分
[八省联考2018]林克卡特树lct 一看这种题就不是lct... 除了直径好拿分,别的都难做. 所以必须转化 突破口在于:连“0”边 对于k=0,我们求直径 k=1,对于(p,q)一定是从p出发,走 ...
- [BZOJ 5252][LOJ 2478][九省联考2018] 林克卡特树
[BZOJ 5252][LOJ 2478][九省联考2018] 林克卡特树 题意 给定一个 \(n\) 个点边带权的无根树, 要求切断其中恰好 \(k\) 条边再连 \(k\) 条边权为 \(0\) ...
- LuoguP4383 [八省联考2018]林克卡特树lct
LuoguP4383 [八省联考2018]林克卡特树lct https://www.luogu.org/problemnew/show/P4383 分析: 题意等价于选择\(K\)条点不相交的链,使得 ...
- luoguP4383 [八省联考2018]林克卡特树(树上dp,wqs二分)
luoguP4383 [八省联考2018]林克卡特树(树上dp,wqs二分) Luogu 题解时间 $ k $ 条边权为 $ 0 $ 的边. 是的,边权为零. 转化成选正好 $ k+1 $ 条链. $ ...
- P4383 [八省联考2018]林克卡特树 树形dp Wqs二分
LINK:林克卡特树 作为树形dp 这道题已经属于不容易的级别了. 套上了Wqs二分 (反而更简单了 大雾 容易想到还是对树进行联通情况的dp 然后最后结果总和为各个联通块内的直径. \(f_{i,j ...
- 【BZOJ5252】林克卡特树(动态规划,凸优化)
[BZOJ5252]林克卡特树(动态规划,凸优化) 题面 BZOJ(交不了) 洛谷 题解 这个东西显然是随着断开的越来越多,收益增长速度渐渐放慢. 所以可以凸优化. 考虑一个和\(k\)相关的\(dp ...
- 【HEOI 2018】林克卡特树
转载请注明出处:http://www.cnblogs.com/TSHugh/p/8776179.html 先说60分的.思路题解上很清晰: 问题似乎等价于选K+1条点不相交的链哎!F(x,k,0/1/ ...
- bzoj5252 [2018多省省队联测]林克卡特树
斜率优化树形dp?? 我们先将问题转化成在树上选K+1条互不相交路径,使其权值和最大. 然后我们考虑60分的dp,直接维护每个点子树内选了几条路径,然后该点和0/1/2条路径相连 然后我们会发现最后的 ...
- BZOJ5252 八省联考2018林克卡特树(动态规划+wqs二分)
假设已经linkcut完了树,答案显然是树的直径.那么考虑这条直径在原树中是怎样的.容易想到其是由原树中恰好k+1条点不相交的链(包括单个点)拼接而成的.因为这样的链显然可以通过linkcut拼接起来 ...
随机推荐
- java学习日记-基础-列出2~100内的素数
素数的概念:一个整数如果只能整除1和它本身,那么这个整数就是一个素数 方法一:素数是除去能被2整除.3整除.5整除.7整除的整数,但包含2,3,5,7 public class Sushu { pub ...
- Spring Cloud 入门教程 - 搭建配置中心服务
简介 Spring Cloud 提供了一个部署微服务的平台,包括了微服务中常见的组件:配置中心服务, API网关,断路器,服务注册与发现,分布式追溯,OAuth2,消费者驱动合约等.我们不必先知道每个 ...
- 《MySQL必知必会》读书笔记_4
PS:一个实际的存储过程案例 CREATE DEFINER=`root`@`localhost` PROCEDURE `sp_delete_article_by_id`(IN `id` int) BE ...
- java队列
"队列"这个单词是英国人说的"排".在英国"排队"的意思就是站到一排当中去.计算机科学中,队列是一种数据结构,有点类似栈,只是在队列中第一个 ...
- jvm比较详尽的内存结构
JVM内存结构 2012-09-17 15:27:59 分类: Java 本文转自:http://www.blogjava.net/nkjava/archive/2012/03/14/371831. ...
- SQL 逻辑优化 case when 转为 union all
通常数据库的优化从硬件层面去考虑可分为4个方面: CPU:即降低计算复杂度,如减少sql各类聚合函数,窗口函数,case when等. IO :(较少查询结果集过程中对数据的访问量.数据优化很大程度从 ...
- Android 路由框架ARouter最佳实践
转载请标明出处:http://blog.csdn.net/zhaoyanjun6/article/details/76165252 本文出自[赵彦军的博客] 一:什么是路由? 说简单点就是映射页面跳转 ...
- BigDecimal常用的加减乘除算法、比较大小、保存两位小数点
项目中涉及到了BigDecimal的加.减.乘.比较大小.精确度的问题.所以在此总结一下,方便以后复习. //加法 BigDecimal coins = new BigDecimal("0& ...
- DevOps之五 Tomcat的安装与配置
安装说明 安装环境:CentOS-7 安装方式:源码安装 软件:apache-tomcat-9 下载地址:https://tomcat.apache.org/download-90.cgi 一.安装t ...
- 请求转发(forward)和重定向(redirect)的区别
转发不会改变地址栏,重定向会. 转发是请求一次,重定向请求两次. 转发过程中只有一个request对象产生,重定向是两个. 转发不能转发到站外,重定向可以发送到站外. 重定向的第2个请求的请求方式是什 ...