Prim算法主要的思路:将点集一分为二,通过找到两个点集之间的最短距离,来确定最小生成树,每次确定最短距离后,对两个点集进行更新。

具体的实现过程:难点就是如何找到两个点集之间的最短距离,这里设置两个数组,lowcost[i],mst[i],分别表示以i为终点的边和对应的起点,有了这两个数组就能够顺利的进行状态更新了。(整个代码与dijstra算法惊人的相似),大家可以将两者对比起来看。

代码:

#include <iostream>
#define INF 99999999
#include <string.h>
using namespace std; int a[][];
int lowcost[];//lowcost[i]表示以i为终点的最短距离,
int mst[];//mst[i]对应的lowcost[i]的起点 //默认的起点为1
void prim(int n){
int minl,tmp;
int flag[];
for(int i=;i<=n;i++)
mst[i]=;
for(int i=;i<=n;i++)
lowcost[i]=a[][i];
memset(flag,,sizeof(flag));
for(int k=;k<=n;k++){
minl=INF;
for(int i=;i<=n;i++){
if(flag[i]==&&lowcost[i]<minl){
minl=lowcost[i];
tmp=i;
}
}
cout<<'V'<<mst[tmp]<<" "<<'V'<<tmp<<" "<<minl<<endl;
for(int i=;i<=n;i++){
if(a[tmp][i]<lowcost[i]&&a[tmp][i]>){
lowcost[i]=a[tmp][i];
mst[i]=tmp;
}
}
flag[tmp]=;
}
} int main(){
int n,m;
int x,y,path;
cin>>n>>m;
for(int i=;i<=n;i++){
for(int j=;j<=n;j++){
if(i==j)
a[i][j]=;
else
a[i][j]=INF;
}
}
for(int i=;i<=m;i++){
cin>>x>>y>>path;
a[x][y]=a[y][x]=path;
}
prim(n);
return ;
}

Prim算法的简单分析的更多相关文章

  1. Dijkstra和Prim算法的区别

    Dijkstra和Prim算法的区别 1.先说说prim算法的思想: 众所周知,prim算法是一个最小生成树算法,它运用的是贪心原理(在这里不再证明),设置两个点集合,一个集合为要求的生成树的点集合A ...

  2. 最小生成树,Prim算法与Kruskal算法,408方向,思路与实现分析

    最小生成树,Prim算法与Kruskal算法,408方向,思路与实现分析 最小生成树,老生常谈了,生活中也总会有各种各样的问题,在这里,我来带你一起分析一下这个算法的思路与实现的方式吧~~ 在考研中呢 ...

  3. 算法设计和分析(Prim算法构建最小生成树)

    问题: 给定无向图G(N,M)表明图G有N个顶点,M条边,通过Prim算法构造一个最小生成树 分析: 算法流程: 构造好的最小生成树就是step6 运行代码: #include<cstdio&g ...

  4. 最小生成树问题---Prim算法与Kruskal算法实现(MATLAB语言实现)

    2015-12-17晚,复习,甚是无聊,阅<复杂网络算法与应用>一书,得知最小生成树问题(Minimum spanning tree)问题.记之. 何为树:连通且不含圈的图称为树. 图T= ...

  5. 最小生成树--Prim算法,基于优先队列的Prim算法,Kruskal算法,Boruvka算法,“等价类”UnionFind

    最小支撑树树--Prim算法,基于优先队列的Prim算法,Kruskal算法,Boruvka算法,“等价类”UnionFind 最小支撑树树 前几节中介绍的算法都是针对无权图的,本节将介绍带权图的最小 ...

  6. ZOJ 1203 Swordfish(Prim算法求解MST)

    题目: There exists a world within our world A world beneath what we call cyberspace. A world protected ...

  7. 【树论 1】 prim算法的学习和使用

    进阶版神犇可以看看本题解的姊妹篇 Kruskal算法的学习和使用 下面的内容是prim算法 但是最小生成树是什么呢? 标准定义如下:在边子集所构成的树中,不但包括了连通图里的所有顶点,且其所有边的权值 ...

  8. 算法笔记_054:Prim算法(Java)

    目录 1 问题描述 2 解决方案 2.1 贪心法   1 问题描述 何为Prim算法? 此处引用网友博客中一段介绍(PS:个人感觉网友的这篇博客对于Prim算法讲解的很清楚,本文与之相区别的地方在于具 ...

  9. 最小生成树的Prim算法以及Kruskal算法的证明

    Prime算法的思路:从任何一个顶点开始,将这个顶点作为最小生成树的子树,通过逐步为该子树添加边直到所有的顶点都在树中为止.其中添加边的策略是每次选择外界到该子树的最短的边添加到树中(前提是无回路). ...

随机推荐

  1. idea导入本地maven项目

    首先把项目关闭File->Close Project 否则会将项目导入到当前项目中 回到主界面,点击Import Project 一定要选择项目的pom文件 默认设置,继续往下走 默认配置,下一 ...

  2. Ubuntu命令行连接WPA/WPA2无线网线

    一,连接无加密无线网络zhang:sudo ip link set wlan0 up sudo iw dev wlan0 connect zhangsudo dhclient wlan0 二,连接WP ...

  3. Linq GroupJoin

    static void Main(string[] args) { List<Person> persons = new List<Person> { }, }, }; Lis ...

  4. 新概念英语(1-125)Tea for two

    Does Susan have tea by herself?A:Can't you come in and have tea now,Peter? Not yet.B:I must water th ...

  5. centos6.5中rpm包安装mysql5.7(初始化出错如何解决)

    下载rpm包见:http://www.cnblogs.com/grey-wolf/p/7472680.html 1.rz上传到服务器,解压缩 rz [root@mini2 upload]# -.el6 ...

  6. 关于block的循环引用的问题

    在block的循环引用的问题上我们都知道如果在block内部修改外部的变量的时候,要加__block以防止循环引用的问题,但是如果block是当前对象的一个属性的时候,要修改当前对象的一个属性的时候就 ...

  7. 初试valgrind内存调试工具

    虽然GDB调试工具功能强大,但对于平时做题调试的使用并不方便,这里尝试学习使用比较简单的valgrind工具 Valgrind是一个提供程序调试及性能分析的工具集.其包含的工具主要有Memcheck, ...

  8. [论文阅读] MobileNets: Efficient Convolutional Neural Networks for Mobile Vision Applications (MobileNet)

    论文地址:MobileNets: Efficient Convolutional Neural Networks for Mobile Vision Applications 本文提出的模型叫Mobi ...

  9. CNN中减少网络的参数的三个思想

    CNN中减少网络的参数的三个思想: 1) 局部连接(Local Connectivity) 2) 权值共享(Shared Weights) 3) 池化(Pooling) 局部连接 局部连接是相对于全连 ...

  10. SpringBoot中@ManyToMany的坑

    我在User表中添加了manytomany的外键映射 @ManyToMany(fetch=FetchType.EAGER) @JoinTable(name="user_role", ...