窗口函数基于结果集进行计算,将计算出的结果合并到输出的结果集上,并返回多行。使用窗口函数能大幅度简化SQL代码。
gaussdb提供内置的窗口函数,例如row_num()、rank()、lag()等,除了内置的窗口函数外,聚合函数、自定义函数后接OVER属性也可以作为窗口函数。
1,创建测试表并插入数据。

postgres=# DROP TABLE IF EXISTS scores;
NOTICE: table "scores" does not exist, skipping
DROP TABLE
postgres=# CREATE TABLE scores(id serial PRIMARY KEY,subject varchar(32),stu_name varchar(32),score numeric(3,0));
CREATE TABLE
postgres=# INSERT INTO scores(subject,stu_name,score) VALUES('Chinese','user1',80),('Chinese','user2',90),('Chinese','user3',90),('math','user1',90),('math','user2',80),('math','user3',100),('English','user1',80),('English','user2',90),('English','user3',70);
INSERT 0 9
postgres=# SELECT * FROM scores;
id | subject | stu_name | score
----+---------+----------+-------
1 | Chinese | user1 | 80
2 | Chinese | user2 | 90
3 | Chinese | user3 | 90
4 | math | user1 | 90
5 | math | user2 | 80
6 | math | user3 | 100
7 | English | user1 | 80
8 | English | user2 | 90
9 | English | user3 | 70
(9 rows)

2,avg() OVER()计算分组后数据的平均值。

postgres=# SELECT subject,stu_name,score,avg(score) OVER(PARTITION BY subject) FROM scores;
subject | stu_name | score | avg
---------+----------+-------+---------------------
Chinese | user1 | 80 | 86.6666666666666667
Chinese | user2 | 90 | 86.6666666666666667
Chinese | user3 | 90 | 86.6666666666666667
English | user3 | 70 | 80.0000000000000000
English | user1 | 80 | 80.0000000000000000
English | user2 | 90 | 80.0000000000000000
math | user1 | 90 | 90.0000000000000000
math | user2 | 80 | 90.0000000000000000
math | user3 | 100 | 90.0000000000000000
(9 rows)

3,row_number() OVER()对分组后的数据标注行号,从1开始。

postgres=# SELECT row_number() OVER(PARTITION BY subject ORDER BY score DESC),* FROM scores;
row_number | id | subject | stu_name | score
------------+----+---------+----------+-------
1 | 2 | Chinese | user2 | 90
2 | 3 | Chinese | user3 | 90
3 | 1 | Chinese | user1 | 80
1 | 8 | English | user2 | 90
2 | 7 | English | user1 | 80
3 | 9 | English | user3 | 70
1 | 6 | math | user3 | 100
2 | 4 | math | user1 | 90
3 | 5 | math | user2 | 80
(9 rows)

4,rank() OVER()与row_number() OVER()类似主要区别是当组内某行字段值相同时,行号重复并且行号产生间隙。

postgres=# SELECT rank() OVER(PARTITION BY subject ORDER BY score DESC),* FROM scores;
rank | id | subject | stu_name | score
------+----+---------+----------+-------
1 | 2 | Chinese | user2 | 90
1 | 3 | Chinese | user3 | 90
3 | 1 | Chinese | user1 | 80
1 | 8 | English | user2 | 90
2 | 7 | English | user1 | 80
3 | 9 | English | user3 | 70
1 | 6 | math | user3 | 100
2 | 4 | math | user1 | 90
3 | 5 | math | user2 | 80
(9 rows)

5,dense_rank() OVER()与rank() 类似,主要区别为当组内某行字段值相同时,虽然重复行号,但行号不产生间隙。

postgres=# SELECT dense_rank() OVER(PARTITION BY subject ORDER BY score DESC),* FROM scores;
dense_rank | id | subject | stu_name | score
------------+----+---------+----------+-------
1 | 2 | Chinese | user2 | 90
1 | 3 | Chinese | user3 | 90
2 | 1 | Chinese | user1 | 80
1 | 8 | English | user2 | 90
2 | 7 | English | user1 | 80
3 | 9 | English | user3 | 70
1 | 6 | math | user3 | 100
2 | 4 | math | user1 | 90
3 | 5 | math | user2 | 80
(9 rows)

6,lag() OVER()可以获取行偏移offset那行字段的数据。

postgres=# SELECT LAG(id,-1) OVER(),* FROM scores;
lag | id | subject | stu_name | score
-----+----+---------+----------+-------
2 | 1 | Chinese | user1 | 80
3 | 2 | Chinese | user2 | 90
4 | 3 | Chinese | user3 | 90
5 | 4 | math | user1 | 90
6 | 5 | math | user2 | 80
7 | 6 | math | user3 | 100
8 | 7 | English | user1 | 80
9 | 8 | English | user2 | 90
| 9 | English | user3 | 70
(9 rows) postgres=# SELECT LAG(id,1,100) OVER(),* FROM scores;--不存在时指定默认值
lag | id | subject | stu_name | score
-----+----+---------+----------+-------
100 | 1 | Chinese | user1 | 80
1 | 2 | Chinese | user2 | 90
2 | 3 | Chinese | user3 | 90
3 | 4 | math | user1 | 90
4 | 5 | math | user2 | 80
5 | 6 | math | user3 | 100
6 | 7 | English | user1 | 80
7 | 8 | English | user2 | 90
8 | 9 | English | user3 | 70
(9 rows)

7,first_value() OVER()用来取结果集每一个分组的第一行数据的字段值。

postgres=# SELECT first_value(score) OVER(PARTITION BY subject ORDER BY score DESC),* FROM scores;
first_value | id | subject | stu_name | score
-------------+----+---------+----------+-------
90 | 2 | Chinese | user2 | 90
90 | 3 | Chinese | user3 | 90
90 | 1 | Chinese | user1 | 80
90 | 8 | English | user2 | 90
90 | 7 | English | user1 | 80
90 | 9 | English | user3 | 70
100 | 6 | math | user3 | 100
100 | 4 | math | user1 | 90
100 | 5 | math | user2 | 80
(9 rows)

8,last_value() OVER()用来取结果集每一个分组的最后一行数据的字段值。

postgres=# SELECT last_value(score) OVER(PARTITION BY subject),* FROM scores;
last_value | id | subject | stu_name | score
------------+----+---------+----------+-------
90 | 1 | Chinese | user1 | 80
90 | 2 | Chinese | user2 | 90
90 | 3 | Chinese | user3 | 90
90 | 9 | English | user3 | 70
90 | 7 | English | user1 | 80
90 | 8 | English | user2 | 90
100 | 4 | math | user1 | 90
100 | 5 | math | user2 | 80
100 | 6 | math | user3 | 100
(9 rows)

9,nth_value() OVER()用来取结果集每一个分组的指定行数据的字段值。

postgres=# SELECT nth_value(score,2) OVER(PARTITION BY subject),* FROM scores;
nth_value | id | subject | stu_name | score
-----------+----+---------+----------+-------
90 | 1 | Chinese | user1 | 80
90 | 2 | Chinese | user2 | 90
90 | 3 | Chinese | user3 | 90
80 | 9 | English | user3 | 70
80 | 7 | English | user1 | 80
80 | 8 | English | user2 | 90
80 | 4 | math | user1 | 90
80 | 5 | math | user2 | 80
80 | 6 | math | user3 | 100
(9 rows)

10,如果窗口函数需要多次使用,可以使用窗口函数别名。

postgres=# SELECT avg(score) OVER(r),sum(score) OVER(r),* FROM scores WINDOW r AS (PARTITION BY subject);
avg | sum | id | subject | stu_name | score
---------------------+-----+----+---------+----------+-------
86.6666666666666667 | 260 | 1 | Chinese | user1 | 80
86.6666666666666667 | 260 | 2 | Chinese | user2 | 90
86.6666666666666667 | 260 | 3 | Chinese | user3 | 90
80.0000000000000000 | 240 | 9 | English | user3 | 70
80.0000000000000000 | 240 | 7 | English | user1 | 80
80.0000000000000000 | 240 | 8 | English | user2 | 90
90.0000000000000000 | 270 | 4 | math | user1 | 90
90.0000000000000000 | 270 | 5 | math | user2 | 80
90.0000000000000000 | 270 | 6 | math | user3 | 100
(9 rows)

pg 窗口函数的更多相关文章

  1. 专访探探DBA张文升:PG在互联网应用中同样也跑的很欢畅

    张文升认为,PG无论在可靠性和性能方面都不输其它任何关系型数据库   张文升,探探DBA,负责探探的数据库架构.运维和调优的工作.拥有8年开发经验,曾任去哪儿网DBA.   9月24日,张文升将参加在 ...

  2. 数据库周刊31丨openGauss 正式开源;7月数据库排行榜发布;浙江移动国产数据库AntDB迁移;oracle ADG跨版本搭建;PG解决社保问题;mysqlbinlog解析……

    摘要:墨天轮数据库周刊第31期发布啦,每周1次推送本周数据库相关热门资讯.精选文章.干货文档. 热门资讯 1.openGauss 正式开源,华为公开发布源代码[摘要]6月1日,华为正式宣布开源数据库能 ...

  3. 简析服务端通过GT导入SHP至PG的方法

    文章版权由作者李晓晖和博客园共有,若转载请于明显处标明出处:http://www.cnblogs.com/naaoveGIS/ 1.背景 项目中需要在浏览器端直接上传SHP后服务端进行数据的自动入PG ...

  4. PG 中 JSON 字段的应用

    13 年发现 pg 有了 json 类型,便从 oracle 转 pg,几年下来也算比较熟稔了,总结几个有益的实践. 用途一:存储设计时无法预料的文档性的数据.比如,通常可以在人员表准备一个 json ...

  5. pg gem 安装(postgresql94)

    使用下面命令安装报错 gem install pg 错误: [root@AS-test middle_database]# gem install pgBuilding native extensio ...

  6. #pg学习#postgresql的安装

    1.按照官网给的步骤编译安装(Mac安装是比较容易的,相比Liunx) cd /Users/renlipeng/Desktop/postgresql-9.5.1 ./configure --prefi ...

  7. Over:窗口函数(滑动聚合)

    Over 窗口函数在Select 子句中,对查询的结果集进行“滑动-聚合”运算:如果使用count,那么基于滑动窗口的聚合语义同 base+1 累加:如果使用sum,那么基于滑动窗口的聚合语义等同于数 ...

  8. SQL Server中的窗口函数

    简介     SQL Server 2012之后对窗口函数进行了极大的加强,但对于很多开发人员来说,对窗口函数却不甚了解,导致了这样强大的功能被浪费,因此本篇文章主要谈一谈SQL Server中窗口函 ...

  9. PG 函数的易变性(Function Volatility Categories)

    此概念的接触是在做分区表的时候碰到的,分区表按时间字段分区,在查询时当where条件中时间为now()或者current_time()等时是无法查询的,即使进行格式转换也不行,只有是时间格式如‘201 ...

  10. mysql 序列与pg序列的比较

    mysql序列(这里只谈innodb引擎): 在使用mysql的AUTO_INCREMENT时,使用AUTO_INCREMENT的字段必须建有索引,也可以为索引的一部分.当没有索引时会报错:      ...

随机推荐

  1. svn 中的trunk,tags,branches分别是什么意思?

    1.trunk是主分支,是日常开发进行的地方.2.branches是分支.一些阶段性的release版本,这些版本是可以继续进行开发和维护的,则放在branches目录中.又比如为不同用户客制化的版本 ...

  2. CentOS 7--Nginx安装

    1.安装依赖 yum install -y gcc-c++pcre pcre-develzlib zlib-developenssl openssl-devel 2.下载Nginx wget http ...

  3. drools规则的入门使用

    1:pom文件 <!--drools--><dependency> <groupId>org.drools</groupId> <artifact ...

  4. react native 音频播放 react-native-sound

    先放一个效果图:该图实现的效果,点击播放按钮,进度条随着时间移动,点击暂停按钮,进度条停止移动 第一步,用到什么库 1.zmxv/react-native-sound 播放声音的库   2.calls ...

  5. webpack和source map

    当 webpack 打包源代码时,可能会很难追踪到 error(错误) 和 warning(警告) 在源代码中的原始位置. 如果打包后代码有一处错误,特别是使用的vue.react这些前端框架.打包后 ...

  6. 修改 npm 全局模块及模块缓存存放位置

    说明 npm 全局模块安装将包安装到 C:\Users\%user%\AppData\Roaming\npm 目录下,缓存则放于 C:\Users\%user%\AppData\Roaming\npm ...

  7. vue iframe网页内嵌及传参

    思路 通过域名传参做并加密处理 内嵌页面通过域名来接收参数并解密 外套页面 <iframe :src="url" scrolling="yes" back ...

  8. Rest-Assured:发送PATCH请求:更新Hello-imook(java.lang.IllegalArgumentException: Invalid number of path parameters. Expected 2, was 0. Undefined path parameters are: owner, repo.)

    代码: /*     * 发送PATCH请求:更新Hello-imook     */    @Test    public void test003_PatchMethod() {        S ...

  9. 裁员潮下,我月薪3W依旧坚挺

    近几年来产品经理一直是求职市场中的香饽饽: 年薪20w起.没有专业限制.职业天花板高,甚至行业中一直流传着一句话:产品经理是CEO的学前班. 在各种光环的加持下,不少应届生或有转行打算的职场人都将目光 ...

  10. java基于ssm框架开发的公交查询系统源码公交系统源码公交路线查询项目有论文

    简介 java基于ssm的公交路线查询系统,用户可以查询公交站点公交车路线以及公交换乘方案,还可以查看公交车路线地图,以及该站点所有的公交车路线. 演示视频: https://www.ixigua.c ...