MMDeploy安装笔记
MMDeploy的TensorRT教程
Step1: 创建虚拟环境并且安装MMDetection
conda create -n openmmlab python=3.7 -y
conda activate openmmlab
conda install pytorch==1.8.0 torchvision==0.9.0 cudatoolkit=10.2 -c pytorch -y
# install mmcv
pip install mmcv-full==1.4.0 -f https://download.openmmlab.com/mmcv/dist/cu102/torch1.8/index.html
# install mmdetection
git clone https://github.com/open-mmlab/mmdetection.git
cd mmdetection
pip install -r requirements/build.txt
pip install -v -e .
Step2: 下载MMDetectin中训练好的权重
Download the checkpoint from this link and put it in the {MMDET_ROOT}/checkpoints where {MMDET_ROOT} is the root directory of your MMDetection codebase.
Step3: 下载安装MMDeploy
- 在anaconda中运行下列命令来安装MMDeploy
conda activate openmmlab
git clone https://github.com/open-mmlab/mmdeploy.git
cd mmdeploy
git submodule update --init --recursive
pip install -e . # 安装MMDeploy
Step4: Install TensorRT
install TensorRT through tar file
After installation, you’d better add TensorRT environment variables to bashrc by
cd /the/path/of/tensorrt/tar/gz/file
tar -zxvf TensorRT-8.2.3.0.Linux.x86_64-gnu.cuda-11.4.cudnn8.2.tar.gz
# 将下面的导入到 ~/.bashrc
export TENSORRT_DIR=$(pwd)/TensorRT-8.2.3.0
export LD_LIBRARY_PATH=$TENSORRT_DIR/lib:$LD_LIBRARY_PATH
Step5: Install cuDNN
install cudnn8.2 through tar file
Extract the compressed file and set the environment variables
cd /the/path/of/cudnn/tgz/file
tar -zxvf cudnn-11.3-linux-x64-v8.2.1.32.tgz
# 将下面的导入到 ~/.bashrc
export CUDNN_DIR=$(pwd)/cuda
export LD_LIBRARY_PATH=$CUDNN_DIR/lib64:$LD_LIBRARY_PATH
Step6: Build Model Converter
Step6-1: Build Custom Ops
- TensorRT Custom Ops
cd ${MMDEPLOY_DIR}
mkdir -p build && cd build
cmake -DCMAKE_CXX_COMPILER=g++-7 \
-DMMDEPLOY_TARGET_BACKENDS=trt \
-DTENSORRT_DIR=${TENSORRT_DIR} \
-DCUDNN_DIR=${CUDNN_DIR} ..
make -j$(nproc)
Step6-2: install Model Converter
cd ${MMDEPLOY_DIR}
pip install -e .
Step6-3: 验证模型是否能够进行转换
python ${MMDEPLOY_DIR}/tools/check_env.py
# 如果正常输出会得到:
# 2022-05-04 10:13:07,140 - mmdeploy - INFO - tensorrt: 8.2.3.0 ops_is_avaliable : True
Step6-4: Convert Model
- Once you have installed MMDeploy, you can convert the PyTorch model in the OpenMMLab model zoo to the backend model with one magic spell!
# Assume you have installed MMDeploy in ${MMDEPLOY_DIR} and MMDetection in ${MMDET_DIR}
# If you do not know where to find the path. Just type `pip show mmdeploy` and `pip show mmdet` in your console.
python ${MMDEPLOY_DIR}/tools/deploy.py \
${MMDEPLOY_DIR}/configs/mmdet/detection/detection_tensorrt_dynamic-320x320-1344x1344.py \
${MMDET_DIR}/configs/faster_rcnn/faster_rcnn_r50_fpn_1x_coco.py \
${MMDET_DIR}/checkpoints/faster_rcnn_r50_fpn_1x_coco_20200130-047c8118.pth \
${MMDET_DIR}/demo/demo.jpg \
--work-dir work_dirs \ # 转换好的模型保存目录
--device cuda:0 \ # 将cuda:0 更改成cuda???
--show \ # 展示使用后端推理框架,和原来pytorch推理的两张图片
--dump-info # 输出,可用与SDK
At the same time, an onnx model file end2end.onnx and ene2end.engine deploy.json detail.json pipeline.json (SDK config files) will generate on the work directory work_dirs.
Step6-5: Inference Model
- Now you can do model inference with the APIs provided by the backend. But what if you want to test the model instantly? We have some backend wrappers for you.
from mmdeploy.apis import inference_model
deploy_cfg = "/home/zranguai/Deploy/MMDeploy/configs/mmdet/detection/detection_tensorrt_dynamic-320x320-1344x1344.py"
model_cfg = "/home/zranguai/Deploy/mmdetection/configs/faster_rcnn/faster_rcnn_r50_fpn_1x_coco.py"
backend_files = ["/home/zranguai/Deploy/MMDeploy/work_dirs/end2end.engine"]
img = "/home/zranguai/Deploy/mmdetection/demo/demo.jpg"
device = 'cuda:0'
result = inference_model(model_cfg, deploy_cfg, backend_files, img=img, device=device)
print(result)
Step6-6: Evaluate Model
- You might wonder that does the backend model have the same precision as the original one? How fast can the model run? MMDeploy provides tools to test the model.
python ${MMDEPLOY_DIR}/tools/test.py \
${MMDEPLOY_DIR}/configs/mmdet/detection/detection_tensorrt_dynamic-320x320-1344x1344.py \
${MMDET_DIR}/configs/faster_rcnn/faster_rcnn_r50_fpn_1x_coco.py \
--model /home/zranguai/Deploy/MMDeploy/work_dirs/end2end.engine \
--metrics "bbox" \
--device cuda:0
Step7: Build SDK
Step7-1: build MMDeploy SDK for TensorRT
注意: 30系显卡需要将pplcv安装到最新版本。参考issue
cd ${MMDEPLOY_DIR}
mkdir -p build && cd build
cmake -DMMDEPLOY_BUILD_SDK=ON \
-DCMAKE_CXX_COMPILER=g++-7 \
-DMMDEPLOY_BUILD_SDK_PYTHON_API=ON \
-DMMDEPLOY_TARGET_DEVICES="cuda;cpu" \
-DMMDEPLOY_TARGET_BACKENDS=trt \
-Dpplcv_DIR=${PPLCV_DIR}/cuda-build/install/lib/cmake/ppl \ # pplcv到最新版本 A high-performance image processing library of openPPL. ref:https://mmdeploy.readthedocs.io/en/latest/build/linux.html#install-dependencies-for-sdk
-DTENSORRT_DIR=${TENSORRT_DIR} \
-DCUDNN_DIR=${CUDNN_DIR} \
-DOpenCV_DIR=/usr/lib/x86_64-linux-gnu/cmake/opencv4 \
-Dspdlog_DIR=/usr/lib/x86_64-linux-gnu/cmake/spdlog \
-DMMDEPLOY_CODEBASES=mmdet ..
make -j$(nproc) && make install
Step7-2: build demo
cd ${MMDEPLOY_DIR}/build/install/example
mkdir -p build && cd build
cmake -DOpenCV_DIR=/usr/lib/x86_64-linux-gnu/cmake/opencv4 \
-DMMDeploy_DIR=${MMDEPLOY_DIR}/build/install/lib/cmake/MMDeploy ..
make object_detection
# suppress verbose logs
export SPDLOG_LEVEL=warn
# running the object detection example
./object_detection cuda ${work_dirs} ${path/to/an/image}
# 例子: ./object_detection cuda ${MMDEPLOY_DIR}/work_dirs ${MMDET_DIR}/demo/demo.jpg
在Clion中调试代码
setting中设置:
CMake options:
-DMMDeploy_DIR=/home/zranguai/Deploy/MMDeploy/build/install/lib/cmake/MMDeploy -DTENSORRT_DIR=/home/zranguai/Deploy/Backend/TensorRT/TensorRT-8.2.3.0 -DCUDNN_DIR=/home/zranguai/Deploy/Backend/TensorRT/cuda
Build directory:
/home/zranguai/Deploy/MMDeploy/build/install
Build options:
object_detection
configuation:
cuda /home/zranguai/Deploy/MMDeploy/work_dirs /home/zranguai/Deploy/MMDeploy/demo/demo.jpg
+++++++++++++++++++我是分割线++++++++++++++
MMDeploy的onnxruntime教程
- 参考官方教程
Here is an example of how to deploy and inference Faster R-CNN model of MMDetection from scratch.
step1: 创建虚拟环境并且安装MMDetection
Create Virtual Environment and Install MMDetection.
Please run the following command in Anaconda environment to install MMDetection.
conda create -n openmmlab python=3.7 -y
conda activate openmmlab
conda install pytorch==1.8.0 torchvision==0.9.0 cudatoolkit=10.2 -c pytorch -y
# install mmcv
pip install mmcv-full==1.4.0 -f https://download.openmmlab.com/mmcv/dist/cu102/torch1.8/index.html
# install mmdetection
git clone https://github.com/open-mmlab/mmdetection.git
cd mmdetection
pip install -r requirements/build.txt
pip install -v -e .
step2: 下载MMDetectin中训练好的权重
Download the Checkpoint of Faster R-CNN
Download the checkpoint from this link and put it in the {MMDET_ROOT}/checkpoints where {MMDET_ROOT} is the root directory of your MMDetection codebase.
step3: 安装MMDeploy和ONNX Runtime
Install MMDeploy and ONNX Runtime
step3-1: 安装MMDeploy
Please run the following command in Anaconda environment to install MMDeploy.
conda activate openmmlab
git clone https://github.com/open-mmlab/mmdeploy.git
cd mmdeploy
git submodule update --init --recursive
pip install -e . # 安装MMDeploy
step3-2a: 下载onnxruntime
Once we have installed the MMDeploy, we should select an inference engine for model inference. Here we take ONNX Runtime as an example. Run the following command to install ONNX Runtime:
pip install onnxruntime==1.8.1
Then download the ONNX Runtime library to build the mmdeploy plugin for ONNX Runtime:
step3-2b: 制作onnxruntime的插件(模型转换会需要)
wget https://github.com/microsoft/onnxruntime/releases/download/v1.8.1/onnxruntime-linux-x64-1.8.1.tgz
tar -zxvf onnxruntime-linux-x64-1.8.1.tgz
cd onnxruntime-linux-x64-1.8.1
export ONNXRUNTIME_DIR=$(pwd)
export LD_LIBRARY_PATH=$ONNXRUNTIME_DIR/lib:$LD_LIBRARY_PATH # 也可将这两句写进~/.bashrc
cd ${MMDEPLOY_DIR} # To MMDeploy root directory
mkdir -p build && cd build
# build ONNXRuntime custom ops
cmake -DMMDEPLOY_TARGET_BACKENDS=ort -DONNXRUNTIME_DIR=${ONNXRUNTIME_DIR} ..
make -j$(nproc)
step3-2c: build MMDeploy SDK(使用C的接口会用到)
# build MMDeploy SDK
cmake -DMMDEPLOY_BUILD_SDK=ON \
-DCMAKE_CXX_COMPILER=g++-7 \
-DOpenCV_DIR=/path/to/OpenCV/lib/cmake/OpenCV \ # 这里的opencv安装可参考这里https://mmdeploy.readthedocs.io/en/latest/build/linux.html#install-dependencies-for-sdk
-Dspdlog_DIR=/path/to/spdlog/lib/cmake/spdlog \ # 这里的spdlog安装可参考这里https://mmdeploy.readthedocs.io/en/latest/build/linux.html#install-dependencies-for-sdk
-DONNXRUNTIME_DIR=${ONNXRUNTIME_DIR} \
-DMMDEPLOY_TARGET_BACKENDS=ort \
-DMMDEPLOY_CODEBASES=mmdet ..
make -j$(nproc) && make install
# build MMDeploy SDK具体案例
cmake -DMMDEPLOY_BUILD_SDK=ON \
-DCMAKE_CXX_COMPILER=g++-7 \
-DOpenCV_DIR=/usr/lib/x86_64-linux-gnu/cmake/opencv4 \ # 通过apt-get安装的
-Dspdlog_DIR=/usr/lib/x86_64-linux-gnu/cmake/spdlog \
-DONNXRUNTIME_DIR=${ONNXRUNTIME_DIR} \
-DMMDEPLOY_TARGET_BACKENDS=ort \
-DMMDEPLOY_CODEBASES=mmdet ..
# 其中${MMDEPLOY_DIR} ${MMDET_DIR} ${ONNXRUNTIME_DIR}都可以写在 ~/.bashrc里面然后source ~/.bashrc生效
补充: 验证后端和插件是否安装成功
python ${MMDEPLOY_DIR}/tools/check_env.py
step4: Model Conversion
Once we have installed MMDetection, MMDeploy, ONNX Runtime and built plugin for ONNX Runtime, we can convert the Faster R-CNN to a .onnx model file which can be received by ONNX Runtime. Run following commands to use our deploy tools:
# Assume you have installed MMDeploy in ${MMDEPLOY_DIR} and MMDetection in ${MMDET_DIR}
# If you do not know where to find the path. Just type `pip show mmdeploy` and `pip show mmdet` in your console.
python ${MMDEPLOY_DIR}/tools/deploy.py \
${MMDEPLOY_DIR}/configs/mmdet/detection/detection_onnxruntime_dynamic.py \
${MMDET_DIR}/configs/faster_rcnn/faster_rcnn_r50_fpn_1x_coco.py \
${MMDET_DIR}/checkpoints/faster_rcnn_r50_fpn_1x_coco_20200130-047c8118.pth \
${MMDET_DIR}/demo/demo.jpg \
--work-dir work_dirs \ # 转换好的模型保存目录
--device cpu \
--show \ # 展示使用后端推理框架,和原来pytorch推理的两张图片
--dump-info # 输出方便,可用与SDK
# 补充
# ${MMDEPLOY_DIR}和${MMDET_DIR}已经写进了~/.bashrc
# 转换好了模型可以通过python接口进行推理
例如: Inference Model
Now you can do model inference with the APIs provided by the backend. But what if you want to test the model instantly? We have some backend wrappers for you.
from mmdeploy.apis import inference_model
result = inference_model(model_cfg, deploy_cfg, backend_files, img=img, device=device)
If the script runs successfully, two images will display on the screen one by one. The first image is the infernce result of ONNX Runtime and the second image is the result of PyTorch. At the same time, an onnx model file end2end.onnx and three json files (SDK config files) will generate on the work directory work_dirs.
step5: Run MMDeploy SDK demo
After model conversion, SDK Model is saved in directory ${work_dir}.
Here is a recipe for building & running object detection demo.
cd build/install/example
# path to onnxruntime ** libraries **
export LD_LIBRARY_PATH=/path/to/onnxruntime/lib
# 例子: export LD_LIBRARY_PATH=/home/zranguai/Deploy/Backend/ONNXRuntime/onnxruntime-linux-x64-1.8.1/lib
mkdir -p build && cd build
cmake -DOpenCV_DIR=path/to/OpenCV/lib/cmake/OpenCV \
-DMMDeploy_DIR=${MMDEPLOY_DIR}/build/install/lib/cmake/MMDeploy ..
make object_detection
# 例子:
# cmake -DOpenCV_DIR=/usr/lib/x86_64-linux-gnu/cmake/opencv4 \
# -DMMDeploy_DIR=${MMDEPLOY_DIR}/build/install/lib/cmake/MMDeploy ..
# suppress verbose logs
export SPDLOG_LEVEL=warn
# running the object detection example
./object_detection cpu ${work_dirs} ${path/to/an/image}
# 例子: ./object_detection cpu ${MMDEPLOY_DIR}/work_dirs ${MMDET_DIR}/demo/demo.jpg
If the demo runs successfully, an image named "output_detection.png" is supposed to be found showing detection objects.
++++++++++++++++++++++++++++++++分割线++++++
MMDeploy的OpenVINO教程
Step1: 创建虚拟环境并且安装MMDetection
conda create -n openmmlab python=3.7 -y
conda activate openmmlab
conda install pytorch==1.8.0 torchvision==0.9.0 cudatoolkit=10.2 -c pytorch -y
# install mmcv
pip install mmcv-full==1.4.0 -f https://download.openmmlab.com/mmcv/dist/cu102/torch1.8/index.html
# install mmdetection
git clone https://github.com/open-mmlab/mmdetection.git
cd mmdetection
pip install -r requirements/build.txt
pip install -v -e .
Step2: 下载MMDetectin中训练好的权重
Download the checkpoint from this link and put it in the {MMDET_ROOT}/checkpoints where {MMDET_ROOT} is the root directory of your MMDetection codebase.
Step3: 下载安装MMDeploy
- 在anaconda中运行下列命令来安装MMDeploy
conda activate openmmlab
git clone https://github.com/open-mmlab/mmdeploy.git
cd mmdeploy
git submodule update --init --recursive
pip install -e . # 安装MMDeploy
Step4: 下载OpenVINO
pip install openvino-dev
step4-1: 根据官网提示: 这里的openvino不需要custom ops
step4-2: 可选项: 下载用于使用OpenVINO的SDK
Optional. If you want to use OpenVINO in MMDeploy SDK, please install and configure it by following the guild
- OpenVINO安装
tar -xvzf l_openvino_toolkit_p_2020.4.287.tgz
cd l_openvino_toolkit_p_2020.4.287
sudo ./install_GUI.sh 一路next安装
cd /opt/intel/openvino/install_dependencies
sudo ./install_openvino_dependencies.sh
vi ~/.bashrc
- 把如下几行放置到 bashrc 文件尾
# set env for openvino
source /opt/intel/openvino_2021/bin/setupvars.sh # 注意找到是自己的路径
export INTEL_OPENVINO_DIR=/opt/intel/openvino_2021
export LD_LIBRARY_PATH=/opt/intel/openvino_2021/deployment_tools/inference_engine/lib/intel64
- source ~/.bashrc 激活环境
- 模型优化配置步骤
cd /opt/intel/openvino_2021/deployment_tools/model_optimizer/install_prerequisites
sudo ./install_prerequisites.sh # 可以只安装onnx的
step4-3: build MMDeploy SDK(openvino)
cd ${MMDEPLOY_DIR} # To MMDeploy root directory
mkdir -p build && cd build
cmake -DMMDEPLOY_BUILD_SDK=ON \
-DCMAKE_CXX_COMPILER=g++-7 \
-DOpenCV_DIR=/path/to/OpenCV/lib/cmake/OpenCV \
-Dspdlog_DIR=/path/to/spdlog/lib/cmake/spdlog \
-DInferenceEngine_DIR=${INTEL_OPENVINO_DIR}/deployment_tools/inference_engine/share \
-DMMDEPLOY_TARGET_BACKENDS=openvino \
-DMMDEPLOY_CODEBASES=mmdet ..
make -j$(nproc) && make install
# build MMDeploy SDK具体案例
cmake -DMMDEPLOY_BUILD_SDK=ON \
-DCMAKE_CXX_COMPILER=g++-7 \
-DOpenCV_DIR=/usr/lib/x86_64-linux-gnu/cmake/opencv4 \ # 这里设置apt-get下载的opencv
-Dspdlog_DIR=/usr/lib/x86_64-linux-gnu/cmake/spdlog \
-DInferenceEngine_DIR=${INTEL_OPENVINO_DIR}/deployment_tools/inference_engine/share \
-DMMDEPLOY_TARGET_BACKENDS=openvino \
-DMMDEPLOY_CODEBASES=mmdet ..
# ${INTEL_OPENVINO_DIR}写进了~/.bashrc
补充: 验证后端和插件是否安装成功(注意openvino不需要安装插件)
python ${MMDEPLOY_DIR}/tools/check_env.py
# 当把这个export LD_LIBRARY_PATH=/opt/intel/openvino_2021/deployment_tools/inference_engine/lib/intel64写进~/.bashrc里面时候,会导致出现libopencv_ml.so.4.5: cannot open shared object file: No such file or directory ??
Step5: Model Conversion(这一步也可以放在step4-1前面)
# Assume you have installed MMDeploy in ${MMDEPLOY_DIR} and MMDetection in ${MMDET_DIR}
# If you do not know where to find the path. Just type `pip show mmdeploy` and `pip show mmdet` in your console.
python ${MMDEPLOY_DIR}/tools/deploy.py \
${MMDEPLOY_DIR}/configs/mmdet/detection/detection_openvino_dynamic-300x300.py \
${MMDET_DIR}/configs/faster_rcnn/faster_rcnn_r50_fpn_1x_coco.py \
${MMDET_DIR}/checkpoints/faster_rcnn_r50_fpn_1x_coco_20200130-047c8118.pth \
${MMDET_DIR}/demo/demo.jpg \
--work-dir work_dirs \ # 转换好的模型保存目录
--device cpu \
--show \ # 展示使用后端推理框架,和原来pytorch推理的两张图片
--dump-info # 输出,可用与SDK
# 补充
# ${MMDEPLOY_DIR}和${MMDET_DIR}已经写进了~/.bashrc
# 转换好了模型可以通过python接口进行推理
例如: Inference Model
Now you can do model inference with the APIs provided by the backend. But what if you want to test the model instantly? We have some backend wrappers for you.
from mmdeploy.apis import inference_model
result = inference_model(model_cfg, deploy_cfg, backend_files, img=img, device=device)
例子:
deploy_cfg = "/home/zranguai/Deploy/MMDeploy/configs/mmdet/detection/detection_openvino_dynamic-300x300.py"
model_cfg = "/home/zranguai/Deploy/mmdetection/configs/faster_rcnn/faster_rcnn_r50_fpn_1x_coco.py"
backend_files = [ "/home/zranguai/Deploy/MMDeploy/work_dirs/end2end.xml",]
img = "/home/zranguai/Deploy/mmdetection/demo/demo.jpg"
device = 'cpu'
from mmdeploy.apis import visualize_model
visualize_model(model_cfg, deploy_cfg, backend_files[0], img, device, show_result=True)
python ${MMDEPLOY_DIR}/tools/check_env.pyIf the script runs successfully, two images will display on the screen one by one. The first image is the infernce result of OpenVINO and the second image is the result of PyTorch. At the same time, an onnx model file end2end.onnx and ene2end.bin(contains the weights and biases binary data) end2end.xml(describes the networks topology) end2end.mapping deploy.json detail.json pipeline.json (SDK config files) will generate on the work directory work_dirs.
Step6: Run MMDeploy SDK demo(for openvino)
After model conversion, SDK Model is saved in directory ${work_dir}.
Here is a recipe for building & running object detection demo.
cd build/install/example
# path to openvino ** libraries **
export LD_LIBRARY_PATH=/path/to/onnxruntime/lib/intel64
# 例子: export LD_LIBRARY_PATH=/opt/intel/openvino_2021/deployment_tools/inference_engine/lib/intel64
mkdir -p build && cd build
cmake -DOpenCV_DIR=path/to/OpenCV/lib/cmake/OpenCV \ # openvino中opencv路径
-DMMDeploy_DIR=${MMDEPLOY_DIR}/build/install/lib/cmake/MMDeploy ..
make object_detection
# 例子2:
# cmake -DOpenCV_DIR=/opt/intel/openvino_2021/opencv/cmake \
# -DMMDeploy_DIR=${MMDEPLOY_DIR}/build/install/lib/cmake/MMDeploy ..
# suppress verbose logs
export SPDLOG_LEVEL=warn
# running the object detection example
./object_detection cpu ${work_dirs} ${path/to/an/image}
# 例子: ./object_detection cpu ${MMDEPLOY_DIR}/work_dirs ${MMDET_DIR}/demo/demo.jpg
# 可能出现的错误: 上面导出的xml的name: torch-jit-export version="11",解决: 重新安装就好了
If the demo runs successfully, an image named "output_detection.png" is supposed to be found showing detection objects.
MMDeploy安装笔记的更多相关文章
- MonoDevelop 4.2.2/Mono 3.4.0 in CentOS 6.5 安装笔记
MonoDevelop 4.2.2/Mono 3.4.0 in CentOS 6.5 安装笔记 说明 以root账户登录Linux操作系统,注意:本文中的所有命令行前面的 #> 表示命令行提示符 ...
- 基于Ubuntu14.04系统的nvidia tesla K40驱动和cuda 7.5安装笔记
基于Ubuntu14.04系统的nvidia tesla K40驱动和cuda 7.5安装笔记 飞翔的蜘蛛人 注1:本人新手,文章中不准确的地方,欢迎批评指正 注2:知识储备应达到Linux入门级水平 ...
- sublime 安装笔记
sublime 安装笔记 下载地址 安装package control 根据版本复制相应的代码到console,运行 按要求重启几次后再按crtl+shift+p打开命令窗口 输入pcip即可开始安装 ...
- docker在ubuntu14.04下的安装笔记
本文主要是参考官网教程进行ubuntu14.04的安装. 下面是我的安装笔记. 笔记原件完整下载: 链接: https://pan.baidu.com/s/1dEPQ8mP 密码: gq2p
- ArchLinux 安装笔记:续 --zz
续前话 在虚拟机里调试了几天,终于鼓起勇气往实体机安装了,到桌面环境为止的安装过程可以看我的前一篇文章<ArchLinux 安装笔记>.桌面环境我使用的是 GNOME,虽然用了很长一段时间 ...
- Hadoop1.x与2.x安装笔记
Hadoop1.x与2.x安装笔记 Email: chujiaqiang229@163.com 2015-05-09 Hadoop 1.x 安装 Hadoop1.x 集群规划 No 名称 内容 备注 ...
- PHP7安装笔记
PHP7安装笔记 时间 -- :: 喵了个咪 原文 http://www.hdj.me/php7-install-note 主题 PHP # 安装mcrypt yum install -y php-m ...
- python 库安装笔记
python 库安装笔记 zoerywzhou@163.com http://www.cnblogs.com/swje/ 作者:Zhouwan 2017-2-22 友情提示 安装python库的过程中 ...
- 开始使用gentoo linux——gentoo安装笔记(下)
gentoo安装笔记(下) 上一章,已经对操作系统安装做了充分准备,并且已经从livecd(u盘系统)切换进入了gentoo安装环境中. 不过现在才是真正的开始!打起精神!这可不是在装ubuntu! ...
随机推荐
- CentOS安装图形界面以及eclipse的安装
图形界面的安装,以GNOME为例: 1.首先运行命令:yum grouplist 会显示可安装的包,可以自己选择安装. 2.运行 yum gruopinstall "GNOME" ...
- java基础-多线程线程池
线程池 * 程序启动一个新线程成本是比较高的,因为它涉及到要与操作系统进行交互.而使用线程池可以很好的提高性能,尤其是当程序中要创建大量生存期很短的线程时,更应该考虑使用线程池.线程池里的每一个线程代 ...
- Idea中创建maven项目(超详细)
Idea中创建maven项目 提示:前提条件时maven已经安装好,并且环境变量也配置完成,maven没安装好或者环境变量没有配置好的请参考我上一篇文章--maven的安装和配置 上篇博文链接:htt ...
- git的下载安装以及基本操作
版权声明:本文为CSDN博主「~李疆」的原创文章,遵循 CC 4.0 BY-SA 版权协议,转载请附上原文出处链接及本声明.转载原文链接:https://blog.csdn.net/qq_403232 ...
- 【深度学习 论文篇 01-1 】AlexNet论文翻译
前言:本文是我对照原论文逐字逐句翻译而来,英文水平有限,不影响阅读即可.翻译论文的确能很大程度加深我们对文章的理解,但太过耗时,不建议采用.我翻译的另一个目的就是想重拾英文,所以就硬着头皮啃了.本文只 ...
- python---输出函数运行时间的装饰器
""" 装饰器: 不改变原函数的调用方式和函数的前提下, 增加额外的功能, 其本质就是一个闭包 ---输出函数的运行时间 """ impor ...
- 深度理解springboot集成cache缓存之源码解析
一.案例准备 1.创建数据表(employee表) 2.创建Employee实体类封装数据库中的数据 @AllArgsConstructor @NoArgsConstructor @Data @ToS ...
- 宝藏考研公众号,考研up篇(参考)
每当刷完题感觉到累了,看完网课觉得倦了,拿起手机看一下我推荐的宝藏公众号和up推送的文章和视频(。・ω・。)ノ♡,这样既可以换换口味解解腻,又可以不断的提升自己,岂不美哉?让别人以为你拿起手机开始摆烂 ...
- vue滚动分页加载
做了一个项目,要求将后台数据滚动加载. 滚动加载必须要求后台传的接口中由pageSize和pageIndex两个参数,来判断每次传数据的条数和数据的页码. 首先要判断滑轮是向上滚动还是向下滚动,可以在 ...
- zookeeper篇-watch命令
点赞再看,养成习惯,微信搜索「小大白日志」关注这个搬砖人. 文章不定期同步公众号,还有各种一线大厂面试原题.我的学习系列笔记. 每个路径节点都有一个watcher监控,当该节点数据改变时(CRUD), ...