MMDeploy的TensorRT教程

Step1: 创建虚拟环境并且安装MMDetection

conda create -n openmmlab python=3.7 -y
conda activate openmmlab conda install pytorch==1.8.0 torchvision==0.9.0 cudatoolkit=10.2 -c pytorch -y # install mmcv
pip install mmcv-full==1.4.0 -f https://download.openmmlab.com/mmcv/dist/cu102/torch1.8/index.html # install mmdetection
git clone https://github.com/open-mmlab/mmdetection.git
cd mmdetection
pip install -r requirements/build.txt
pip install -v -e .

Step2: 下载MMDetectin中训练好的权重

Download the checkpoint from this link and put it in the {MMDET_ROOT}/checkpoints where {MMDET_ROOT} is the root directory of your MMDetection codebase.

Step3: 下载安装MMDeploy

  • 在anaconda中运行下列命令来安装MMDeploy
conda activate openmmlab

git clone https://github.com/open-mmlab/mmdeploy.git
cd mmdeploy
git submodule update --init --recursive
pip install -e . # 安装MMDeploy

Step4: Install TensorRT

  1. install TensorRT through tar file

  2. After installation, you’d better add TensorRT environment variables to bashrc by

cd /the/path/of/tensorrt/tar/gz/file
tar -zxvf TensorRT-8.2.3.0.Linux.x86_64-gnu.cuda-11.4.cudnn8.2.tar.gz # 将下面的导入到 ~/.bashrc
export TENSORRT_DIR=$(pwd)/TensorRT-8.2.3.0
export LD_LIBRARY_PATH=$TENSORRT_DIR/lib:$LD_LIBRARY_PATH

Step5: Install cuDNN

  1. install cudnn8.2 through tar file

  2. Extract the compressed file and set the environment variables

cd /the/path/of/cudnn/tgz/file
tar -zxvf cudnn-11.3-linux-x64-v8.2.1.32.tgz # 将下面的导入到 ~/.bashrc
export CUDNN_DIR=$(pwd)/cuda
export LD_LIBRARY_PATH=$CUDNN_DIR/lib64:$LD_LIBRARY_PATH

Step6: Build Model Converter

Step6-1: Build Custom Ops

  • TensorRT Custom Ops
cd ${MMDEPLOY_DIR}
mkdir -p build && cd build cmake -DCMAKE_CXX_COMPILER=g++-7 \
-DMMDEPLOY_TARGET_BACKENDS=trt \
-DTENSORRT_DIR=${TENSORRT_DIR} \
-DCUDNN_DIR=${CUDNN_DIR} .. make -j$(nproc)

Step6-2: install Model Converter

cd ${MMDEPLOY_DIR}
pip install -e .

Step6-3: 验证模型是否能够进行转换

python ${MMDEPLOY_DIR}/tools/check_env.py

# 如果正常输出会得到:
# 2022-05-04 10:13:07,140 - mmdeploy - INFO - tensorrt: 8.2.3.0 ops_is_avaliable : True

Step6-4: Convert Model

  • Once you have installed MMDeploy, you can convert the PyTorch model in the OpenMMLab model zoo to the backend model with one magic spell!
# Assume you have installed MMDeploy in ${MMDEPLOY_DIR} and MMDetection in ${MMDET_DIR}
# If you do not know where to find the path. Just type `pip show mmdeploy` and `pip show mmdet` in your console. python ${MMDEPLOY_DIR}/tools/deploy.py \
${MMDEPLOY_DIR}/configs/mmdet/detection/detection_tensorrt_dynamic-320x320-1344x1344.py \
${MMDET_DIR}/configs/faster_rcnn/faster_rcnn_r50_fpn_1x_coco.py \
${MMDET_DIR}/checkpoints/faster_rcnn_r50_fpn_1x_coco_20200130-047c8118.pth \
${MMDET_DIR}/demo/demo.jpg \
--work-dir work_dirs \ # 转换好的模型保存目录
--device cuda:0 \ # 将cuda:0 更改成cuda???
--show \ # 展示使用后端推理框架,和原来pytorch推理的两张图片
--dump-info # 输出,可用与SDK

At the same time, an onnx model file end2end.onnx and ene2end.engine deploy.json detail.json pipeline.json (SDK config files) will generate on the work directory work_dirs.

Step6-5: Inference Model

  • Now you can do model inference with the APIs provided by the backend. But what if you want to test the model instantly? We have some backend wrappers for you.
from mmdeploy.apis import inference_model

deploy_cfg = "/home/zranguai/Deploy/MMDeploy/configs/mmdet/detection/detection_tensorrt_dynamic-320x320-1344x1344.py"
model_cfg = "/home/zranguai/Deploy/mmdetection/configs/faster_rcnn/faster_rcnn_r50_fpn_1x_coco.py"
backend_files = ["/home/zranguai/Deploy/MMDeploy/work_dirs/end2end.engine"]
img = "/home/zranguai/Deploy/mmdetection/demo/demo.jpg"
device = 'cuda:0' result = inference_model(model_cfg, deploy_cfg, backend_files, img=img, device=device)
print(result)

Step6-6: Evaluate Model

  • You might wonder that does the backend model have the same precision as the original one? How fast can the model run? MMDeploy provides tools to test the model.
python ${MMDEPLOY_DIR}/tools/test.py \
${MMDEPLOY_DIR}/configs/mmdet/detection/detection_tensorrt_dynamic-320x320-1344x1344.py \
${MMDET_DIR}/configs/faster_rcnn/faster_rcnn_r50_fpn_1x_coco.py \
--model /home/zranguai/Deploy/MMDeploy/work_dirs/end2end.engine \
--metrics "bbox" \
--device cuda:0

Step7: Build SDK

Step7-1: build MMDeploy SDK for TensorRT

注意: 30系显卡需要将pplcv安装到最新版本。参考issue

cd ${MMDEPLOY_DIR}
mkdir -p build && cd build cmake -DMMDEPLOY_BUILD_SDK=ON \
-DCMAKE_CXX_COMPILER=g++-7 \
-DMMDEPLOY_BUILD_SDK_PYTHON_API=ON \
-DMMDEPLOY_TARGET_DEVICES="cuda;cpu" \
-DMMDEPLOY_TARGET_BACKENDS=trt \
-Dpplcv_DIR=${PPLCV_DIR}/cuda-build/install/lib/cmake/ppl \ # pplcv到最新版本 A high-performance image processing library of openPPL. ref:https://mmdeploy.readthedocs.io/en/latest/build/linux.html#install-dependencies-for-sdk
-DTENSORRT_DIR=${TENSORRT_DIR} \
-DCUDNN_DIR=${CUDNN_DIR} \
-DOpenCV_DIR=/usr/lib/x86_64-linux-gnu/cmake/opencv4 \
-Dspdlog_DIR=/usr/lib/x86_64-linux-gnu/cmake/spdlog \
-DMMDEPLOY_CODEBASES=mmdet .. make -j$(nproc) && make install

Step7-2: build demo

cd ${MMDEPLOY_DIR}/build/install/example
mkdir -p build && cd build cmake -DOpenCV_DIR=/usr/lib/x86_64-linux-gnu/cmake/opencv4 \
-DMMDeploy_DIR=${MMDEPLOY_DIR}/build/install/lib/cmake/MMDeploy ..
make object_detection # suppress verbose logs
export SPDLOG_LEVEL=warn # running the object detection example
./object_detection cuda ${work_dirs} ${path/to/an/image}
# 例子: ./object_detection cuda ${MMDEPLOY_DIR}/work_dirs ${MMDET_DIR}/demo/demo.jpg

在Clion中调试代码

setting中设置:
CMake options:
-DMMDeploy_DIR=/home/zranguai/Deploy/MMDeploy/build/install/lib/cmake/MMDeploy -DTENSORRT_DIR=/home/zranguai/Deploy/Backend/TensorRT/TensorRT-8.2.3.0 -DCUDNN_DIR=/home/zranguai/Deploy/Backend/TensorRT/cuda Build directory:
/home/zranguai/Deploy/MMDeploy/build/install Build options:
object_detection configuation:
cuda /home/zranguai/Deploy/MMDeploy/work_dirs /home/zranguai/Deploy/MMDeploy/demo/demo.jpg

+++++++++++++++++++我是分割线++++++++++++++

MMDeploy的onnxruntime教程

  • 参考官方教程

Here is an example of how to deploy and inference Faster R-CNN model of MMDetection from scratch.

step1: 创建虚拟环境并且安装MMDetection

Create Virtual Environment and Install MMDetection.

Please run the following command in Anaconda environment to install MMDetection.

conda create -n openmmlab python=3.7 -y
conda activate openmmlab conda install pytorch==1.8.0 torchvision==0.9.0 cudatoolkit=10.2 -c pytorch -y # install mmcv
pip install mmcv-full==1.4.0 -f https://download.openmmlab.com/mmcv/dist/cu102/torch1.8/index.html # install mmdetection
git clone https://github.com/open-mmlab/mmdetection.git
cd mmdetection
pip install -r requirements/build.txt
pip install -v -e .

step2: 下载MMDetectin中训练好的权重

Download the Checkpoint of Faster R-CNN

Download the checkpoint from this link and put it in the {MMDET_ROOT}/checkpoints where {MMDET_ROOT} is the root directory of your MMDetection codebase.

step3: 安装MMDeploy和ONNX Runtime

Install MMDeploy and ONNX Runtime

step3-1: 安装MMDeploy

Please run the following command in Anaconda environment to install MMDeploy.

conda activate openmmlab

git clone https://github.com/open-mmlab/mmdeploy.git
cd mmdeploy
git submodule update --init --recursive
pip install -e . # 安装MMDeploy
step3-2a: 下载onnxruntime

Once we have installed the MMDeploy, we should select an inference engine for model inference. Here we take ONNX Runtime as an example. Run the following command to install ONNX Runtime:

pip install onnxruntime==1.8.1

Then download the ONNX Runtime library to build the mmdeploy plugin for ONNX Runtime:

step3-2b: 制作onnxruntime的插件(模型转换会需要)
wget https://github.com/microsoft/onnxruntime/releases/download/v1.8.1/onnxruntime-linux-x64-1.8.1.tgz

tar -zxvf onnxruntime-linux-x64-1.8.1.tgz
cd onnxruntime-linux-x64-1.8.1
export ONNXRUNTIME_DIR=$(pwd)
export LD_LIBRARY_PATH=$ONNXRUNTIME_DIR/lib:$LD_LIBRARY_PATH # 也可将这两句写进~/.bashrc cd ${MMDEPLOY_DIR} # To MMDeploy root directory
mkdir -p build && cd build # build ONNXRuntime custom ops
cmake -DMMDEPLOY_TARGET_BACKENDS=ort -DONNXRUNTIME_DIR=${ONNXRUNTIME_DIR} ..
make -j$(nproc)
step3-2c: build MMDeploy SDK(使用C的接口会用到)
# build MMDeploy SDK
cmake -DMMDEPLOY_BUILD_SDK=ON \
-DCMAKE_CXX_COMPILER=g++-7 \
-DOpenCV_DIR=/path/to/OpenCV/lib/cmake/OpenCV \ # 这里的opencv安装可参考这里https://mmdeploy.readthedocs.io/en/latest/build/linux.html#install-dependencies-for-sdk
-Dspdlog_DIR=/path/to/spdlog/lib/cmake/spdlog \ # 这里的spdlog安装可参考这里https://mmdeploy.readthedocs.io/en/latest/build/linux.html#install-dependencies-for-sdk
-DONNXRUNTIME_DIR=${ONNXRUNTIME_DIR} \
-DMMDEPLOY_TARGET_BACKENDS=ort \
-DMMDEPLOY_CODEBASES=mmdet ..
make -j$(nproc) && make install # build MMDeploy SDK具体案例
cmake -DMMDEPLOY_BUILD_SDK=ON \
-DCMAKE_CXX_COMPILER=g++-7 \
-DOpenCV_DIR=/usr/lib/x86_64-linux-gnu/cmake/opencv4 \ # 通过apt-get安装的
-Dspdlog_DIR=/usr/lib/x86_64-linux-gnu/cmake/spdlog \
-DONNXRUNTIME_DIR=${ONNXRUNTIME_DIR} \
-DMMDEPLOY_TARGET_BACKENDS=ort \
-DMMDEPLOY_CODEBASES=mmdet .. # 其中${MMDEPLOY_DIR} ${MMDET_DIR} ${ONNXRUNTIME_DIR}都可以写在 ~/.bashrc里面然后source ~/.bashrc生效
补充: 验证后端和插件是否安装成功
python ${MMDEPLOY_DIR}/tools/check_env.py

step4: Model Conversion

Once we have installed MMDetection, MMDeploy, ONNX Runtime and built plugin for ONNX Runtime, we can convert the Faster R-CNN to a .onnx model file which can be received by ONNX Runtime. Run following commands to use our deploy tools:

# Assume you have installed MMDeploy in ${MMDEPLOY_DIR} and MMDetection in ${MMDET_DIR}
# If you do not know where to find the path. Just type `pip show mmdeploy` and `pip show mmdet` in your console. python ${MMDEPLOY_DIR}/tools/deploy.py \
${MMDEPLOY_DIR}/configs/mmdet/detection/detection_onnxruntime_dynamic.py \
${MMDET_DIR}/configs/faster_rcnn/faster_rcnn_r50_fpn_1x_coco.py \
${MMDET_DIR}/checkpoints/faster_rcnn_r50_fpn_1x_coco_20200130-047c8118.pth \
${MMDET_DIR}/demo/demo.jpg \
--work-dir work_dirs \ # 转换好的模型保存目录
--device cpu \
--show \ # 展示使用后端推理框架,和原来pytorch推理的两张图片
--dump-info # 输出方便,可用与SDK # 补充
# ${MMDEPLOY_DIR}和${MMDET_DIR}已经写进了~/.bashrc
# 转换好了模型可以通过python接口进行推理
例如: Inference Model
Now you can do model inference with the APIs provided by the backend. But what if you want to test the model instantly? We have some backend wrappers for you. from mmdeploy.apis import inference_model result = inference_model(model_cfg, deploy_cfg, backend_files, img=img, device=device)

If the script runs successfully, two images will display on the screen one by one. The first image is the infernce result of ONNX Runtime and the second image is the result of PyTorch. At the same time, an onnx model file end2end.onnx and three json files (SDK config files) will generate on the work directory work_dirs.

step5: Run MMDeploy SDK demo

After model conversion, SDK Model is saved in directory ${work_dir}.

Here is a recipe for building & running object detection demo.

cd build/install/example

# path to onnxruntime ** libraries **
export LD_LIBRARY_PATH=/path/to/onnxruntime/lib
# 例子: export LD_LIBRARY_PATH=/home/zranguai/Deploy/Backend/ONNXRuntime/onnxruntime-linux-x64-1.8.1/lib mkdir -p build && cd build
cmake -DOpenCV_DIR=path/to/OpenCV/lib/cmake/OpenCV \
-DMMDeploy_DIR=${MMDEPLOY_DIR}/build/install/lib/cmake/MMDeploy ..
make object_detection # 例子:
# cmake -DOpenCV_DIR=/usr/lib/x86_64-linux-gnu/cmake/opencv4 \
# -DMMDeploy_DIR=${MMDEPLOY_DIR}/build/install/lib/cmake/MMDeploy .. # suppress verbose logs
export SPDLOG_LEVEL=warn # running the object detection example
./object_detection cpu ${work_dirs} ${path/to/an/image}
# 例子: ./object_detection cpu ${MMDEPLOY_DIR}/work_dirs ${MMDET_DIR}/demo/demo.jpg

If the demo runs successfully, an image named "output_detection.png" is supposed to be found showing detection objects.

++++++++++++++++++++++++++++++++分割线++++++

MMDeploy的OpenVINO教程

Step1: 创建虚拟环境并且安装MMDetection

conda create -n openmmlab python=3.7 -y
conda activate openmmlab conda install pytorch==1.8.0 torchvision==0.9.0 cudatoolkit=10.2 -c pytorch -y # install mmcv
pip install mmcv-full==1.4.0 -f https://download.openmmlab.com/mmcv/dist/cu102/torch1.8/index.html # install mmdetection
git clone https://github.com/open-mmlab/mmdetection.git
cd mmdetection
pip install -r requirements/build.txt
pip install -v -e .

Step2: 下载MMDetectin中训练好的权重

Download the checkpoint from this link and put it in the {MMDET_ROOT}/checkpoints where {MMDET_ROOT} is the root directory of your MMDetection codebase.

Step3: 下载安装MMDeploy

  • 在anaconda中运行下列命令来安装MMDeploy
conda activate openmmlab

git clone https://github.com/open-mmlab/mmdeploy.git
cd mmdeploy
git submodule update --init --recursive
pip install -e . # 安装MMDeploy

Step4: 下载OpenVINO

pip install openvino-dev

step4-1: 根据官网提示: 这里的openvino不需要custom ops

step4-2: 可选项: 下载用于使用OpenVINO的SDK

  • Optional. If you want to use OpenVINO in MMDeploy SDK, please install and configure it by following the guild

  • 参考安装教程

  1. OpenVINO安装
tar -xvzf l_openvino_toolkit_p_2020.4.287.tgz
cd l_openvino_toolkit_p_2020.4.287
sudo ./install_GUI.sh 一路next安装
cd /opt/intel/openvino/install_dependencies
sudo ./install_openvino_dependencies.sh
vi ~/.bashrc
  1. 把如下几行放置到 bashrc 文件尾
# set env for openvino
source /opt/intel/openvino_2021/bin/setupvars.sh # 注意找到是自己的路径
export INTEL_OPENVINO_DIR=/opt/intel/openvino_2021
export LD_LIBRARY_PATH=/opt/intel/openvino_2021/deployment_tools/inference_engine/lib/intel64
  1. source ~/.bashrc 激活环境
  2. 模型优化配置步骤
cd /opt/intel/openvino_2021/deployment_tools/model_optimizer/install_prerequisites

sudo ./install_prerequisites.sh  # 可以只安装onnx的

step4-3: build MMDeploy SDK(openvino)

cd ${MMDEPLOY_DIR} # To MMDeploy root directory
mkdir -p build && cd build cmake -DMMDEPLOY_BUILD_SDK=ON \
-DCMAKE_CXX_COMPILER=g++-7 \
-DOpenCV_DIR=/path/to/OpenCV/lib/cmake/OpenCV \
-Dspdlog_DIR=/path/to/spdlog/lib/cmake/spdlog \
-DInferenceEngine_DIR=${INTEL_OPENVINO_DIR}/deployment_tools/inference_engine/share \
-DMMDEPLOY_TARGET_BACKENDS=openvino \
-DMMDEPLOY_CODEBASES=mmdet ..
make -j$(nproc) && make install # build MMDeploy SDK具体案例
cmake -DMMDEPLOY_BUILD_SDK=ON \
-DCMAKE_CXX_COMPILER=g++-7 \
-DOpenCV_DIR=/usr/lib/x86_64-linux-gnu/cmake/opencv4 \ # 这里设置apt-get下载的opencv
-Dspdlog_DIR=/usr/lib/x86_64-linux-gnu/cmake/spdlog \
-DInferenceEngine_DIR=${INTEL_OPENVINO_DIR}/deployment_tools/inference_engine/share \
-DMMDEPLOY_TARGET_BACKENDS=openvino \
-DMMDEPLOY_CODEBASES=mmdet .. # ${INTEL_OPENVINO_DIR}写进了~/.bashrc
补充: 验证后端和插件是否安装成功(注意openvino不需要安装插件)
python ${MMDEPLOY_DIR}/tools/check_env.py

# 当把这个export LD_LIBRARY_PATH=/opt/intel/openvino_2021/deployment_tools/inference_engine/lib/intel64写进~/.bashrc里面时候,会导致出现libopencv_ml.so.4.5: cannot open shared object file: No such file or directory  ??

Step5: Model Conversion(这一步也可以放在step4-1前面)

# Assume you have installed MMDeploy in ${MMDEPLOY_DIR} and MMDetection in ${MMDET_DIR}
# If you do not know where to find the path. Just type `pip show mmdeploy` and `pip show mmdet` in your console. python ${MMDEPLOY_DIR}/tools/deploy.py \
${MMDEPLOY_DIR}/configs/mmdet/detection/detection_openvino_dynamic-300x300.py \
${MMDET_DIR}/configs/faster_rcnn/faster_rcnn_r50_fpn_1x_coco.py \
${MMDET_DIR}/checkpoints/faster_rcnn_r50_fpn_1x_coco_20200130-047c8118.pth \
${MMDET_DIR}/demo/demo.jpg \
--work-dir work_dirs \ # 转换好的模型保存目录
--device cpu \
--show \ # 展示使用后端推理框架,和原来pytorch推理的两张图片
--dump-info # 输出,可用与SDK # 补充
# ${MMDEPLOY_DIR}和${MMDET_DIR}已经写进了~/.bashrc
# 转换好了模型可以通过python接口进行推理
例如: Inference Model
Now you can do model inference with the APIs provided by the backend. But what if you want to test the model instantly? We have some backend wrappers for you. from mmdeploy.apis import inference_model result = inference_model(model_cfg, deploy_cfg, backend_files, img=img, device=device) 例子:
deploy_cfg = "/home/zranguai/Deploy/MMDeploy/configs/mmdet/detection/detection_openvino_dynamic-300x300.py"
model_cfg = "/home/zranguai/Deploy/mmdetection/configs/faster_rcnn/faster_rcnn_r50_fpn_1x_coco.py"
backend_files = [ "/home/zranguai/Deploy/MMDeploy/work_dirs/end2end.xml",]
img = "/home/zranguai/Deploy/mmdetection/demo/demo.jpg"
device = 'cpu' from mmdeploy.apis import visualize_model
visualize_model(model_cfg, deploy_cfg, backend_files[0], img, device, show_result=True)

python ${MMDEPLOY_DIR}/tools/check_env.pyIf the script runs successfully, two images will display on the screen one by one. The first image is the infernce result of OpenVINO and the second image is the result of PyTorch. At the same time, an onnx model file end2end.onnx and ene2end.bin(contains the weights and biases binary data) end2end.xml(describes the networks topology) end2end.mapping deploy.json detail.json pipeline.json (SDK config files) will generate on the work directory work_dirs.

Step6: Run MMDeploy SDK demo(for openvino)

After model conversion, SDK Model is saved in directory ${work_dir}.

Here is a recipe for building & running object detection demo.

cd build/install/example

# path to openvino ** libraries **
export LD_LIBRARY_PATH=/path/to/onnxruntime/lib/intel64
# 例子: export LD_LIBRARY_PATH=/opt/intel/openvino_2021/deployment_tools/inference_engine/lib/intel64 mkdir -p build && cd build
cmake -DOpenCV_DIR=path/to/OpenCV/lib/cmake/OpenCV \ # openvino中opencv路径
-DMMDeploy_DIR=${MMDEPLOY_DIR}/build/install/lib/cmake/MMDeploy ..
make object_detection # 例子2:
# cmake -DOpenCV_DIR=/opt/intel/openvino_2021/opencv/cmake \
# -DMMDeploy_DIR=${MMDEPLOY_DIR}/build/install/lib/cmake/MMDeploy .. # suppress verbose logs
export SPDLOG_LEVEL=warn # running the object detection example
./object_detection cpu ${work_dirs} ${path/to/an/image}
# 例子: ./object_detection cpu ${MMDEPLOY_DIR}/work_dirs ${MMDET_DIR}/demo/demo.jpg
# 可能出现的错误: 上面导出的xml的name: torch-jit-export version="11",解决: 重新安装就好了

If the demo runs successfully, an image named "output_detection.png" is supposed to be found showing detection objects.

MMDeploy安装笔记的更多相关文章

  1. MonoDevelop 4.2.2/Mono 3.4.0 in CentOS 6.5 安装笔记

    MonoDevelop 4.2.2/Mono 3.4.0 in CentOS 6.5 安装笔记 说明 以root账户登录Linux操作系统,注意:本文中的所有命令行前面的 #> 表示命令行提示符 ...

  2. 基于Ubuntu14.04系统的nvidia tesla K40驱动和cuda 7.5安装笔记

    基于Ubuntu14.04系统的nvidia tesla K40驱动和cuda 7.5安装笔记 飞翔的蜘蛛人 注1:本人新手,文章中不准确的地方,欢迎批评指正 注2:知识储备应达到Linux入门级水平 ...

  3. sublime 安装笔记

    sublime 安装笔记 下载地址 安装package control 根据版本复制相应的代码到console,运行 按要求重启几次后再按crtl+shift+p打开命令窗口 输入pcip即可开始安装 ...

  4. docker在ubuntu14.04下的安装笔记

    本文主要是参考官网教程进行ubuntu14.04的安装. 下面是我的安装笔记. 笔记原件完整下载: 链接: https://pan.baidu.com/s/1dEPQ8mP 密码: gq2p

  5. ArchLinux 安装笔记:续 --zz

    续前话 在虚拟机里调试了几天,终于鼓起勇气往实体机安装了,到桌面环境为止的安装过程可以看我的前一篇文章<ArchLinux 安装笔记>.桌面环境我使用的是 GNOME,虽然用了很长一段时间 ...

  6. Hadoop1.x与2.x安装笔记

    Hadoop1.x与2.x安装笔记 Email: chujiaqiang229@163.com 2015-05-09 Hadoop 1.x 安装 Hadoop1.x 集群规划 No 名称 内容 备注 ...

  7. PHP7安装笔记

    PHP7安装笔记 时间 -- :: 喵了个咪 原文 http://www.hdj.me/php7-install-note 主题 PHP # 安装mcrypt yum install -y php-m ...

  8. python 库安装笔记

    python 库安装笔记 zoerywzhou@163.com http://www.cnblogs.com/swje/ 作者:Zhouwan 2017-2-22 友情提示 安装python库的过程中 ...

  9. 开始使用gentoo linux——gentoo安装笔记(下)

    gentoo安装笔记(下) 上一章,已经对操作系统安装做了充分准备,并且已经从livecd(u盘系统)切换进入了gentoo安装环境中. 不过现在才是真正的开始!打起精神!这可不是在装ubuntu! ...

随机推荐

  1. 深入理解 flex-grow & flex-shrink & flex-basis

    前言 flex 有三个属性值,分别是 flex-grow, flex-shrink, flex-basis,默认值是 0 1 auto. 发现网上详细介绍他们的文章比较少, 今天就详细说说他们,先一个 ...

  2. html5知识点补充—footer元素的使用

    使用footer元素创建脚注 顾名思义,footer元素通常位于页面的底部.尽管footer通常位于某个区域或者页面的底部,但并非总是如此.footer元素旨在包含作者.网站所有者.版权数据.网站规章 ...

  3. Java连接数据库报错:com.mysql.cj.jdbc.exceptions.CommunicationsException: Communications link failure

    解决方案 连接Mysql报错 The last packet sent successfully to the server was 0 milliseconds ago. The driver ha ...

  4. c++对c的拓展_编译检测的增强

    一:全局变量检测增强:c++编译对全局变量的声明定义有严格区别 //c中全局变量的声明及定义         //c++中全局变量的声明及定义        //c++全局变量写成下列形式则报错 in ...

  5. Py点亮

  6. JavaScript学习总结2-对象

    JavaScript中对象除了最后一个属性以外都在结尾加逗号,同时所有属性都要在{ }内 1 <!DOCTYPE html> 2 <html lang="en"& ...

  7. 今天写了一个可以测试并发数和运行次数的压力测试代码。(Java)

    今天写了一个可以测试并发数和运行次数的压力测试代码 介绍一下为什么会写这么一个工具. 介绍一个这个工具怎么用的. 背景 最近在开发CoapServer端,以及模拟设备侧发送数据调用开发好的CoapSe ...

  8. java 竞赛常用方法

    一,基本数据类型 1.int,float.double等转换为字符串用 String.valueOf方法 eg:double转换为String Double dtDouble=12.31354; St ...

  9. Net程序崩溃了怎么去查找定位问题

    工具 这里用到两个工具分别为Procdump+Windbg Procdump:ProcDump是一个命令行实用工具,主要目的是监视应用程序,以便在管理员或开发人员可用于确定峰值的原因期间监视 CPU ...

  10. box-shadow-阴影,你真的懂吗

    大家好,我是半夏,一个刚刚开始写文的沙雕程序员.如果喜欢我的文章,可以关注 点赞 加我微信:frontendpicker,一起学习交流前端,成为更优秀的工程师-关注公众号:搞前端的半夏,了解更多前端知 ...