LGCF235B题解
简单期望/fad
题意明确,不说了。
对于高次期望,一个套路的方法是维护低次期望(?)
考虑 dp,设 \(dp1[i]\) 为前 \(i\) 次点击中 所有连续的 \(O\) 的长度之和,\(dp2[i]\) 为前 \(i\) 次点击中 所有连续的 \(O\) 的长度的平方和。
很明显有:\(dp1[i]=(dp1[i-1]+1]) \times p[i]\)
然后能发现,dp2 其实就是 \(\sum E(len^2)\)
而:\(E((len+1)^2) = E(len^2 + 2 \times len +1) = E(len^2) + 2 \times E(len) + 1\)
但是由于有 p 的概率,再加上这只是 这一段的长度的平方 的期望,所以剩下 1-p 的概率,长度为 dp2[i-1]。
综合起来:
\]
\]
然后可以滚动“数组”,使得空间为常数。
code:
#include<cstdio>
const int M=1e5+5;
double p,dp1,dp2;
int n;
signed main(){
int i;
scanf("%d",&n);
for(i=1;i<=n;++i){
scanf("%lf",&p);
dp2+=(2*dp1+1)*p;
dp1=(dp1+1)*p;
}
printf("%.15lf",dp2);
}
LGCF235B题解的更多相关文章
- 2016 华南师大ACM校赛 SCNUCPC 非官方题解
我要举报本次校赛出题人的消极出题!!! 官方题解请戳:http://3.scnuacm2015.sinaapp.com/?p=89(其实就是一堆代码没有题解) A. 树链剖分数据结构板题 题目大意:我 ...
- noip2016十连测题解
以下代码为了阅读方便,省去以下头文件: #include <iostream> #include <stdio.h> #include <math.h> #incl ...
- BZOJ-2561-最小生成树 题解(最小割)
2561: 最小生成树(题解) Time Limit: 10 Sec Memory Limit: 128 MBSubmit: 1628 Solved: 786 传送门:http://www.lyd ...
- Codeforces Round #353 (Div. 2) ABCDE 题解 python
Problems # Name A Infinite Sequence standard input/output 1 s, 256 MB x3509 B Restoring P ...
- 哈尔滨理工大学ACM全国邀请赛(网络同步赛)题解
题目链接 提交连接:http://acm-software.hrbust.edu.cn/problemset.php?page=5 1470-1482 只做出来四道比较水的题目,还需要加强中等题的训练 ...
- 2016ACM青岛区域赛题解
A.Relic Discovery_hdu5982 Time Limit: 2000/1000 MS (Java/Others) Memory Limit: 65536/65536 K (Jav ...
- poj1399 hoj1037 Direct Visibility 题解 (宽搜)
http://poj.org/problem?id=1399 http://acm.hit.edu.cn/hoj/problem/view?id=1037 题意: 在一个最多200*200的minec ...
- 网络流n题 题解
学会了网络流,就经常闲的没事儿刷网络流--于是乎来一发题解. 1. COGS2093 花园的守护之神 题意:给定一个带权无向图,问至少删除多少条边才能使得s-t最短路的长度变长. 用Dijkstra或 ...
- CF100965C题解..
求方程 \[ \begin{array}\\ \sum_{i=1}^n x_i & \equiv & a_1 \pmod{p} \\ \sum_{i=1}^n x_i^2 & ...
随机推荐
- MySQL 1093 - You can't specify target table 'sc' for update in FROM clause
错误代码如下: #(8) 把"邓维杰"同学的成绩全部删除. SELECT * FROM sc WHERE EXISTS(SELECT * FROM student WHERE st ...
- js _proto_和prototype 区别 剖析
首先,要明确几个点: 1.在JS里,万物皆对象.方法(Function)是对象,方法的原型(Function.prototype)是对象.因此,它们都会具有对象共有的特点. 即:对象具有属性__pro ...
- k8s实战之部署Prometheus+Grafana可视化监控告警平台
写在前面 之前部署web网站的时候,架构图中有一环节是监控部分,并且搭建一套有效的监控平台对于运维来说非常之重要,只有这样才能更有效率的保证我们的服务器和服务的稳定运行,常见的开源监控软件有好几种,如 ...
- Java线程--BlockingQueue使用
原创:转载需注明原创地址 https://www.cnblogs.com/fanerwei222/p/11871704.html Java线程--BlockingQueue使用 阻塞队列就是内容满了之 ...
- 理解ASP.NET Core - 基于JwtBearer的身份认证(Authentication)
注:本文隶属于<理解ASP.NET Core>系列文章,请查看置顶博客或点击此处查看全文目录 在开始之前,如果你还不了解基于Cookie的身份认证,那么建议你先阅读<基于Cookie ...
- 基于FMC接口的Kintex-7 XC7K325T PCIeX4 3U PXIe接口卡
一.板卡概述 本板卡基于Xilinx公司的FPGAXC7K325T-2FFG900 芯片,pin_to_pin兼容FPGAXC7K410T-2FFG900 ,支持PCIeX8.64bit DDR3容量 ...
- 【一天一个小知识10/20】Unity安卓获取麦克风并录音保存。
2021-10-20 10:42:16 #region 模块信息 // **************************************************************** ...
- io流复习+代码演示
前置知识: 序列化和反序列化 1.序列化就是在保存数据时, 保存数据的值和数据类型 2.反序列化就是在恢复数据时, 恢复数据的值和数据类型 3.需要让某个对象支持序列化机制,则必须让其类是可序列化的, ...
- kafka在linux下安装
简介 Kafka是一种高吞吐量的分布式发布订阅消息系统,它可以处理消费者在网站中的所有动作流数据. 相关术语(参考百度百科) Broker Kafka集群包含一个或多个服务器,这种服务器被称为brok ...
- 超强可视化图表工具:Smartbi!!
要制作出专业的可视化图表,还是需要一定的学习成本的,并且需要大量的时间.并且即使是制作出来,配色也是一大难题,对于一般人而言,通常会通过两种方式实现可视化大屏的制作: 1.写代码 大部分人可能会选择大 ...