CF908G&LOJ6697口胡
为什么我从ACAM做到了数位DP啊
考虑枚举前缀顶着最高位和后缀没有顶着的最高位。
考虑计算一个数对答案的贡献。统计 \(t\) 的出现次数记录到 \(c[t]\) 中。
贡献就是 \(\sum_{i=0}^{9}((\sum_{x=0}^{\sum_{j=i}^{9}c[j]-1}i\times10^{x})-(\sum_{x=0}^{\sum_{j=i+1}^{9}c[j]-1}i\times 10^{x}))\)。
\]
\]
\]
\]
我们只需要计算左边那一车,最后除以 \(9\) 就好了。
然后我们注意到枚举前缀相当于强制你的 \(c[i]\) 不小于某个值。我们可以直接对 \(c\) 做后缀和。
因为只有 \(O(n)\) 个前缀需要被计算,而且 \(n\) 的范围支持 \(O(n^2)\),所以我们考虑 \(O(n)\) 算这个东西。
设 \(c\) 的后缀和数组为 \(t\),\(dp[c][n]\) 表示 \(t[c]=n\) 且只考虑了 \([0,c]\) 这几个数码的权值。
容易使用前缀和优化 DP 计算。最后取 \(\sum_{i=0}^{n}dp[9][i]\) 即可。
复杂度 \(O(10n^2)\)。
考虑复杂点儿的情况,计算 \(\sum i\times f(i)\) 而不是 \(\sum f(i)\)。
注意到我们只是给一个数带上了权值。
仍然考虑上述过程。假设固定前缀后枚举出来的后缀集合为 \(P\),枚举出来的前缀代表的数为 \(t\),那么我们计算的就是 \(\sum_{g\in P}(t+g)f(t+g)=\sum_{g\in P}t\times f(t+g)+g\times f(t+g)\)。
我们刚才计算的是 \(\sum_{g\in P}f(t+g)\),所以只需要考虑如何计算 \(\sum_{g\in P}g\times f(t+g)\) 即可。
仍然考虑对每一个 \(c\) 数组计算答案。带有幂的部分贡献和上面是一样的只需要将 \(10\) 替换成 \(B\),\(9\) 替换成 \(B-1\) 即可。考虑带有前面的 \(g\) 如何计算。
考虑计算每一种数码对答案的贡献。首先将其他 \(B-1\) 中数码全部看成同一种颜色,只需要再乘上一个组合数来补上系数即可。
剩下的部分,考虑枚举某个位置出现了 \(i\),然后剩下的部分随便乱填。
\]
\]
\]
\]
剩下的部分还不会,鸽了鸽了(
CF908G&LOJ6697口胡的更多相关文章
- Topcoder口胡记 SRM 562 Div 1 ~ SRM 599 Div 1
据说做TC题有助于提高知识水平? :) 传送门:https://284914869.github.io/AEoj/index.html 转载请注明链接:http://www.cnblogs.com/B ...
- 口胡FFT现场(没准就听懂了)&&FFT学习笔记
前言(不想听的可以跳到下面) OK.蒟蒻又来口胡了. 自从ZJOI2019上Day的数论课上的多项式听到懵逼了,所以我就下定决心要学好多项式.感觉自己以前学的多项式都是假的. 但是一直在咕咕,现在是中 ...
- BZOJ 口胡记录
最近实在是懒的不想打代码...好像口胡也算一种训练,那就口胡把. BZOJ 2243 染色(树链剖分) 首先树链剖分,然后记录下每个区间的左右端点颜色和当前区间的颜色段.再对每个节点维护一个tag标记 ...
- Atcoder/Topcoder 口胡记录
Atcoder/Topcoder 理论 AC Atcoder的❌游戏示范 兴致勃勃地打开一场 AGC 看 A 题,先 WA 一发,然后花了一年时间 Fix. 看 B 题,啥玩意?这能求? 睡觉觉. e ...
- NOIP2016考前做题(口胡)记录
NOIP以前可能会持续更新 写在前面 NOIP好像马上就要到了,感觉在校内训练里面经常被虐有一种要滚粗的感觉(雾.不管是普及组还是提高组,我都参加了好几年了,结果一个省一都没有,今年如果还没有的话感觉 ...
- 关于有向图走“无限次”后求概率/期望的口胡/【题解】HNCPC2019H 有向图
关于有向图走"无限次"后求概率/期望的口胡/[题解]HNCPC2019H 有向图 全是口胡 假了不管 讨论的都是图\(G=(V,E),|V|=n,|E|=m\)上的情况 " ...
- 「口胡题解」「CF965D」Single-use Stones
目录 题目 口胡题解 题目 有许多的青蛙要过河,可惜的是,青蛙根本跳不过河,他们最远只能跳 \(L\) 单位长度,而河宽 \(W\) 单位长度. 在河面上有一些石头,距离 \(i\) 远的地方有 \( ...
- PKUSC 2022 口胡题解
\(PKUSC\ 2022\)口胡题解 为了更好的在考试中拿分,我准备学习基础日麻知识(为什么每年都考麻将 啊啊啊) 首先\(STO\)吉老师\(ORZ,\)真的学到了好多 观察标签发现,这套题覆盖知 ...
- NOIP 口胡
因为没准备啥东西 这两天口胡一下近年 NOIP 的题 大概会一道不落?没什么很寄的考点主要是 2021 T1 报数 打一个 \(O(\log n)\) 查询 \(n\) 中是否有 \(7\),打一个类 ...
随机推荐
- HOOK API(三) —— HOOK 所有程序的 MessageBox
转载来源:https://www.cnblogs.com/hookjc/ 0x00 前言 本实例要实现HOOK MessageBox,包括MessageBoxA和MessageBoxW,其实现细节与H ...
- Java中命名Dao、Bean、conn等包的含义(不定期补充)
感谢大佬:https://blog.csdn.net/j904538808/article/details/78904732 (1)DAO是Data Access Object数据访问接口.数据访问: ...
- sublime中的emmet插件的使用技巧
1.我要生成一个2行3列,宽300px,高500px的表. table[width=300 height=500]>(tr>td{$}*3)*2
- 分布式消息队列RocketMQ(一)安装与启动
分布式消息队列RocketMQ 一.RocketMQ简介 RocketMQ(火箭MQ) 出自于阿里,后开源给apache成为apache的顶级开源项目之一,顶住了淘宝10年的 双11压力 是电商产品的 ...
- Java中Arrays数组工具类的使用全解
本文几乎涵盖了所有的Arrays工具类(基于Java 11)的方法以及使用用例,一站式带你了解Arrays类的用法,希望对大家有帮助. 码字不易,三连支持一下吧 Arrays数组工具类 方法一览表 快 ...
- Solution -「多校联训」光影交错
\(\mathcal{Description}\) Link. 一个游戏包含若干次卡牌抽取,每次以 \(p_l\) 的概率得到 \(+1\),\(p_d\) 的概率得到 \(-1\),否则得到 ...
- 我们一起来学grep
文章目录 grep 介绍 grep 命令格式 grep 命令选项 grep 实例 查找指定进程 查找指定进程个数 从文件中读取关键词进行搜索 从多个文件中查找关键字 输出以u开头的行 输出非u开头的行 ...
- suse 12 二进制部署 Kubernetets 1.19.7 - 第07章 - 部署kube-controller-manager组件
文章目录 1.7.部署kube-controller-manager 1.7.0.创建kube-controller-manager请求证书 1.7.1.生成kube-controller-manag ...
- 『无为则无心』Python基础 — 44、对文件和文件夹的操作
目录 1.os模块介绍 2.查看os模块相关文档 3.os模块常用方法 (1)文件重命名 (2)删除文件 (3)创建文件夹 (4)删除文件夹 (5)获取当前目录 (6)改变默认目录 (7)获取目录列表 ...
- [LeetCode]1431. 拥有最多糖果的孩子
给你一个数组 candies 和一个整数 extraCandies ,其中 candies[i] 代表第 i 个孩子拥有的糖果数目. 对每一个孩子,检查是否存在一种方案,将额外的 extraCandi ...