转载自:https://blog.csdn.net/UbuntuTouch/article/details/104588232

跨集群搜索(cross-cluster search)使您可以针对一个或多个远程集群运行单个搜索请求。 例如,您可以使用跨集群搜索来筛选和分析存储在不同数据中心的集群中的日志数据。

如上面所述,当我们的client向集群cluster_1发送请求时,它可以搜索自己本身的集群,同时也可以向另外的两个集群cluster_2及cluster_3发送请求。最后的结果由cluster_1返回给客户端。

目前支持的APIs:

  • Search
  • Multi search
  • Search template
  • Multi search template

跨集群搜索例子

注册remote cluster

要执行跨集群搜索,必须至少配置一个远程集群。在集群设置中配置了远程群集

  • 使用cluster.remote属性
  • 种子(seeds)是远程集群中的节点列表,用于在注册远程集群时检索集群状态

以下cluster update settings API请求添加了三个远程集群:cluster_one,cluster_two和cluster_three。

PUT _cluster/settings
{
"persistent": {
"cluster": {
"remote": {
"cluster_one": {
"seeds": [
"127.0.0.1:9300"
]
},
"cluster_two": {
"seeds": [
"127.0.0.1:9301"
]
},
"cluster_three": {
"seeds": [
"127.0.0.1:9302"
]
}
}
}
}
}

动手实践

安装集群

在今天的实践中,我们来设置两个集群:



在上面的描述中,我们配置了两个集群:cluster 1及cluster 2。它们位于同一个网路内,可以互相访问。在安装时,我们必须注意的是:

  • 把我们的Elasticsearch及Kibana分别解压,并安装于不同的两个目录中。这样它们的安装互相不干扰,从而能形成两个不同的集群,虽然它们集群的名字可以是一样的。为了方便,我们把两个集群的名字分别取为cluster_1及cluster_2。
  • 我们可以分别对Elasticsearch的配置文件config/elasticsearch.yml做如上的配置。同时我们也需要对Kibana之中的config/kibana.yml做配置,这样使得cluster_1对应的Kibana的口地址为5601,而对于cluster_2的Kibana的口地址为5602。

在上面可能有很多人感到疑问:为啥我们还需要配置端口地址9300及9301?事实上,Elasticsearch中有两种重要的网络通信机制需要了解:

  • HTTP:用于HTTP通信绑定的地址和端口,这是Elasticsearch REST API公开的方式
  • transport:用于集群内节点之间的内部通信

等我们安装好我们的两个集群我们可以通过如下的方法来查看:

如果我们能够同时看到上面的两个集群的画面,则表明我们的集群已经设置正确。

搜索

我们接下来进行配置。我们在kibana_2,也既是端口地址为5602的Kibana。我们打入如下的命令:

PUT _cluster/settings
{
"persistent": {
"cluster.remote": {
"remote_cluster": {
"seeds": [
"127.0.0.1:9300"
]
}
}
}
}

在上面,我们在cluster_2里配置可以连接到cluster_1的这样设置。因为cluster_1的transport口地址是9300。

我们可以看到如下的返回信息:

我们接下来使用如下的命令来检查我们的连接状态:

GET _remote/info

我们可以看到如下的响应信息:


{
"remote_cluster" : {
"seeds" : [
"127.0.0.1:9300"
],
"connected" : true,
"num_nodes_connected" : 1,
"max_connections_per_cluster" : 3,
"initial_connect_timeout" : "30s",
"skip_unavailable" : false
}
}

它表明我们的连接是成功的。

这个时候我们在Kibana_1中创建如下的twitter索引:

POST _bulk
{"index":{"_index":"twitter","_id":1}}
{"user":"张三","message":"今儿天气不错啊,出去转转去","uid":2,"age":20,"city":"北京","province":"北京","country":"中国","address":"中国北京市海淀区","location":{"lat":"39.970718","lon":"116.325747"}, "DOB": "1999-04-01"}
{"index":{"_index":"twitter","_id":2}}
{"user":"老刘","message":"出发,下一站云南!","uid":3,"age":22,"city":"北京","province":"北京","country":"中国","address":"中国北京市东城区台基厂三条3号","location":{"lat":"39.904313","lon":"116.412754"}, "DOB": "1997-04-01"}
{"index":{"_index":"twitter","_id":3}}
{"user":"李四","message":"happy birthday!","uid":4,"age":25,"city":"北京","province":"北京","country":"中国","address":"中国北京市东城区","location":{"lat":"39.893801","lon":"116.408986"}, "DOB": "1994-04-01"}
{"index":{"_index":"twitter","_id":4}}
{"user":"老贾","message":"123,gogogo","uid":5,"age":30,"city":"北京","province":"北京","country":"中国","address":"中国北京市朝阳区建国门","location":{"lat":"39.718256","lon":"116.367910"}, "DOB": "1989-04-01"}
{"index":{"_index":"twitter","_id":5}}
{"user":"老王","message":"Happy BirthDay My Friend!","uid":6,"age":26,"city":"北京","province":"北京","country":"中国","address":"中国北京市朝阳区国贸","location":{"lat":"39.918256","lon":"116.467910"}, "DOB": "1993-04-01"}
{"index":{"_index":"twitter","_id":6}}
{"user":"老吴","message":"好友来了都今天我生日,好友来了,什么 birthday happy 就成!","uid":7,"age":28,"city":"上海","province":"上海","country":"中国","address":"中国上海市闵行区","location":{"lat":"31.175927","lon":"121.383328"}, "DOB": "1991-04-01"}

我们可以在Kibana_1中通过如下的命令来检查twitter索引是否已经被成功创建:



在上面,我们可以看到我们已经成功地在cluster_1上创建了twitter索引,那么我们怎么在cluster_2上对这个进行搜索呢?

我们在Kibana_2里,打入如下的命令:

GET remote_cluster:twitter/_search

我们将看到如下的输出:

从上面我们可以看出来,我们可以对位于cluster_1的twitter索引进行搜索。

对remote索引进行分析

cluster_1

在Kibana_1中,我们通过如下的方法来加载我们的测试数据:



然后点击“Add data”:



这样在cluster_1中,我们已经成功地加载了Sample flight data索引。

cluster_2

我们打开Kibana_2,并创建一个为cluster_1中的Sample flight data的index pattern



点击“Create index pattern”:

输入我们想要的索引。注意在前面加上remote_cluster:



在上面,如果我们有本地和远程相同类型的索引(比如,我们针对不同地区的服务器来收集数据),我们可以使用逗号“,”把所有的索引放在一起做成一个index pattern,比如就像:remote_cluster:kibana_sample_data_flights, my_local_index。



点击“Create index pattern”:

这样,我们就创建了位于cluster_1里的索引的一个index pattern。我们点击右上角的星号,并使之成为我们的默认的index。

我们点击Kibana_2左上角的Discover:



因为我们的默认的index是remote_cluster:kibana_sample_data_flights,所以我们的Discover默认的情况先显示的是所有关于位于cluster_1上的kibana_sample_data_flights索引数据。我们可以在cluster_2对这些数据进行分析。

Elasticsearch:跨集群搜索 Cross-cluster search (CCS)的更多相关文章

  1. Elasticsearch跨集群搜索(Cross Cluster Search)

    1.简介 Elasticsearch在5.3版本中引入了Cross Cluster Search(CCS 跨集群搜索)功能,用来替换掉要被废弃的Tribe Node.类似Tribe Node,Cros ...

  2. Elasticsearch 搜索模块之Cross Cluster Search(跨集群搜索)

    Cross Cluster Search简介 cross-cluster search功能允许任何节点作为跨多个群集的federated client(联合客户端),与tribe node不同的是cr ...

  3. elasticsearch跨集群数据迁移

    写这篇文章,主要是目前公司要把ES从2.4.1升级到最新版本7.8,不过现在是7.9了,官方的文档:https://www.elastic.co/guide/en/elasticsearch/refe ...

  4. Elasticsearch:跨集群搜索 Cross-cluster search(CCS)及安全

    文章转载自:https://elasticstack.blog.csdn.net/article/details/116569527

  5. ES cross cluster search跨集群查询

    ES 5.3以后出的新功能.测试demo如下: 下载ES 5.5版本,然后分别本机创建2个实例,配置如下: cluster.name: xx1 network.host: 127.0.0.1 http ...

  6. 分布式搜索ElasticSearch构建集群与简单搜索实例应用

    分布式搜索ElasticSearch构建集群与简单搜索实例应用 关于ElasticSearch不介绍了,直接说应用. 分布式ElasticSearch集群构建的方法. 1.通过在程序中创建一个嵌入es ...

  7. Elasticsearch 主从同步之跨集群复制

    文章转载自:https://mp.weixin.qq.com/s/alHHxXont6XFm_m9PfsGfw 1.什么是跨集群复制? 跨集群复制(Cross-cluster replication, ...

  8. PB级数据实时查询,滴滴Elasticsearch多集群架构实践

    PB级数据实时查询,滴滴Elasticsearch多集群架构实践  mp.weixin.qq.com 点击上方"IT牧场",选择"设为星标"技术干货每日送达 点 ...

  9. Elastic Stack之ElasticSearch分布式集群yum方式搭建

    Elastic Stack之ElasticSearch分布式集群yum方式搭建 作者:尹正杰  版权声明:原创作品,谢绝转载!否则将追究法律责任. 一.搜索引擎及Lucene基本概念 1>.什么 ...

随机推荐

  1. HCNP Routing&Switching之BFD

    BFD技术背景 什么是BFD?它的主要作用是做什么的,这是我们学习BFD需要搞清楚的地方: BFD是Bidirectional Forwarding Detection的缩写,翻译成中文就是双向转发检 ...

  2. 手把手教你在netty中使用TCP协议请求DNS服务器

    目录 简介 DNS传输协议简介 DNS的IP地址 Do53/TCP在netty中的使用 搭建DNS netty client 发送DNS查询消息 DNS查询的消息处理 总结 简介 DNS的全称doma ...

  3. Centos7 安装mysql服务器并开启远程访问功能

    大二的暑假,波波老师送了一个华为云的服务器给我作测试用,这是我程序员生涯里第一次以root身份拥有一台真实的云服务器 而之前学习的linux知识在这时也派上了用场,自己的物理机用的是ubuntu系统, ...

  4. 跟我读论文丨Multi-Model Text Recognition Network

    摘要:语言模型往往被用于文字识别的后处理阶段,本文将语言模型的先验信息和文字的视觉特征进行交互和增强,从而进一步提升文字识别的性能. 本文分享自华为云社区<Multi-Model Text Re ...

  5. 【每天学一点-03】 使用Html5+Less实现简单的静态登录界面(入门Less)

    1.首先引用Less 有npm安装.cdn引用.或者下载Less.js本地引用,我采用的是第三种方法 less.js引用: 下载地址:https://github.com/less/less.js/t ...

  6. 类型转换_float()函数

    float()函数不能将文字类的字符串类型转换成小数类型 同时将整数转换成浮点数类型的时候会在整数后买你加上.0 print(float(1))//output:1.0 print(float('1' ...

  7. git常见问题及解决方法

    简介 由于在git使用过程中会出现各种各样的问题,因此本文将常见的问题记录下来并提供相应的解决方案,方便后续查找. git pull问题: There is no tracking informati ...

  8. .NET 扩展 官方 Logger 实现将日志保存到本地文件

    .NET 项目默认情况下 日志是使用的 ILogger 接口,默认提供一下四种日志记录程序: 控制台 调试 EventSource EventLog 这四种记录程序都是默认包含在 .NET 运行时库中 ...

  9. Linux 域名和DNS

    名字解析的作用: TCP/IP网络中,设备之间的通信依赖IP地址来实现,但是IP地址不好记忆,所以就将每一台设备用一个名字来进行标识,但是这个名字计算机不能解析.所以就需要借助名字解析服务来实现将名字 ...

  10. 算法模板:dijkstra

    #include<iostream> #include<algorithm> #include<cstring> #include<string> #i ...