pytorch学习笔记三之神经网络
神经网络¶
1. 概述¶
使用torch.nn包构建神经网络
nn依赖于autograd来定义模型并对其进行微分
nn.Module包含层,以及返回output的方法forward(input)
以下是对数字图像进行分类的网络:
这是一个简单的前馈网络。 它获取输入,将其一层又一层地馈入,然后最终给出输出
神经网络的典型训练过程如下:
- 定义具有一些可学习参数(或权重)的神经网络
- 遍历输入数据集
- 通过网络处理输入
- 计算损失(输出正确的距离有多远)
- 将梯度传播回网络参数
- 通常使用简单的更新规则来更新网络的权重:weight = weight - learning_rate * gradient
2. 定义网络¶
import torch
import torch.nn as nn
import torch.nn.functional as F
class Net(nn.Module):
def __init__(self):
super(Net, self).__init__()
# 1 input image channel, 6 output channels, 5x5 square convolution
# kernel
self.conv1 = nn.Conv2d(1, 6, 5)
self.conv2 = nn.Conv2d(6, 16, 5)
# an affine operation: y = Wx + b
self.fc1 = nn.Linear(16 * 5 * 5, 120) # 5*5 from image dimension
self.fc2 = nn.Linear(120, 84)
self.fc3 = nn.Linear(84, 10)
def forward(self, x):
# Max pooling over a (2, 2) window
x = F.max_pool2d(F.relu(self.conv1(x)), (2, 2))
# If the size is a square, you can specify with a single number
x = F.max_pool2d(F.relu(self.conv2(x)), 2)
x = torch.flatten(x, 1) # flatten all dimensions except the batch dimension
x = F.relu(self.fc1(x))
x = F.relu(self.fc2(x))
x = self.fc3(x)
return x
net = Net()
print(net)
Net(
(conv1): Conv2d(1, 6, kernel_size=(5, 5), stride=(1, 1))
(conv2): Conv2d(6, 16, kernel_size=(5, 5), stride=(1, 1))
(fc1): Linear(in_features=400, out_features=120, bias=True)
(fc2): Linear(in_features=120, out_features=84, bias=True)
(fc3): Linear(in_features=84, out_features=10, bias=True)
)
只需要定义forward函数,就可以使用autograd为您自动定义backward函数(计算梯度)。 您可以在forward函数中使用任何张量操作
模型的可学习参数由net.parameters()返回
params = list(net.parameters())
print(len(params))
print(params[0].size()) # conv1's .weight
10
torch.Size([6, 1, 5, 5])
尝试一个32x32随机输入
input = torch.randn(1, 1, 32, 32)
out = net(input)
print(out)
tensor([[-0.0201, -0.0048, 0.0562, 0.0409, -0.0155, 0.0404, 0.1170, 0.0380,
-0.0494, 0.0060]], grad_fn=<AddmmBackward0>)
使用随机梯度将所有参数和反向传播的梯度缓冲区归零:
net.zero_grad()
out.backward(torch.randn(1, 10))
注意:
torch.nn仅支持小批量。 整个torch.nn包仅支持作为微型样本而不是单个样本的输入
例如,nn.Conv2d将采用nSamples x nChannels x Height x Width的 4D 张量
如果您只有一个样本,只需使用input.unsqueeze(0)添加一个假批量尺寸
回顾:
- torch.Tensor-一个多维数组,支持诸如backward()的自动微分操作。 同样,保持相对于张量的梯度
- nn.Module-神经网络模块。 封装参数的便捷方法,并带有将其移动到 GPU,导出,加载等的帮助器
- nn.Parameter-一种张量,即将其分配为Module的属性时,自动注册为参数
- autograd.Function-实现自动微分操作的正向和反向定义。 每个Tensor操作都会创建至少一个Function节点,该节点连接到创建Tensor的函数,并且编码其历史记录
3. 损失函数¶
损失函数采用一对(输出,目标)输入,并计算一个值,该值估计输出与目标之间的距离
nn包下有几种不同的损失函数。 一个简单的损失是:nn.MSELoss,它计算输入和目标之间的均方误差
output = net(input)
target = torch.randn(10) # a dummy target, for example
target = target.view(1, -1) # make it the same shape as output
criterion = nn.MSELoss()
loss = criterion(output, target)
print(loss)
tensor(0.7557, grad_fn=<MseLossBackward0>)
现在,如果使用.grad_fn属性向后跟随loss,将看到一个计算图,如下所示:
input -> conv2d -> relu -> maxpool2d -> conv2d -> relu -> maxpool2d -> view -> linear -> relu -> linear -> relu -> linear -> MSELoss -> loss
因此,当我们调用loss.backward()时,整个图将被微分。 损失,并且图中具有requires_grad=True的所有张量将随梯度累积其.grad张量。
为了说明,让我们向后走几步:
print(loss.grad_fn) # MSELoss
print(loss.grad_fn.next_functions[0][0]) # Linear
print(loss.grad_fn.next_functions[0][0].next_functions[0][0]) # ReLU
<MseLossBackward0 object at 0x7f9b58584d30>
<AddmmBackward0 object at 0x7f9b58574ba8>
<AccumulateGrad object at 0x7f9b58584d30>
4. 反向传播¶
要反向传播误差,我们要做的只是对loss.backward()。不过,需要清除现有的梯度,否则梯度将累积到现有的梯度中
现在,我们将其称为loss.backward(),然后看一下向后前后conv1的偏差梯度
net.zero_grad() # zeroes the gradient buffers of all parameters
print('conv1.bias.grad before backward')
print(net.conv1.bias.grad)
loss.backward()
print('conv1.bias.grad after backward')
print(net.conv1.bias.grad)
conv1.bias.grad before backward
tensor([0., 0., 0., 0., 0., 0.])
conv1.bias.grad after backward
tensor([ 0.0066, -0.0124, -0.0028, 0.0020, -0.0132, 0.0006])
5. 更新权重¶
实践中使用的最简单的更新规则是随机梯度下降(SGD):
weight = weight - learning_rate * gradient
import torch.optim as optim
# create your optimizer
optimizer = optim.SGD(net.parameters(), lr=0.01)
# in your training loop:
optimizer.zero_grad() # zero the gradient buffers
output = net(input)
loss = criterion(output, target)
loss.backward()
optimizer.step() # Does the update
注意:使用optimizer.zero_grad()将梯度缓冲区手动设置为零。 这是因为如反向传播部分中所述累积了梯度
6.参考资料¶
pytorch学习笔记三之神经网络的更多相关文章
- 莫烦PyTorch学习笔记(三)——激励函数
1. sigmod函数 函数公式和图表如下图 在sigmod函数中我们可以看到,其输出是在(0,1)这个开区间内,这点很有意思,可以联想到概率,但是严格意义上讲,不要当成概率.sigmod函数 ...
- Oracle学习笔记三 SQL命令
SQL简介 SQL 支持下列类别的命令: 1.数据定义语言(DDL) 2.数据操纵语言(DML) 3.事务控制语言(TCL) 4.数据控制语言(DCL)
- [Firefly引擎][学习笔记三][已完结]所需模块封装
原地址:http://www.9miao.com/question-15-54671.html 学习笔记一传送门学习笔记二传送门 学习笔记三导读: 笔记三主要就是各个模块的封装了,这里贴 ...
- JSP学习笔记(三):简单的Tomcat Web服务器
注意:每次对Tomcat配置文件进行修改后,必须重启Tomcat 在E盘的DATA文件夹中创建TomcatDemo文件夹,并将Tomcat安装路径下的webapps/ROOT中的WEB-INF文件夹复 ...
- java之jvm学习笔记三(Class文件检验器)
java之jvm学习笔记三(Class文件检验器) 前面的学习我们知道了class文件被类装载器所装载,但是在装载class文件之前或之后,class文件实际上还需要被校验,这就是今天的学习主题,cl ...
- VSTO学习笔记(三) 开发Office 2010 64位COM加载项
原文:VSTO学习笔记(三) 开发Office 2010 64位COM加载项 一.加载项简介 Office提供了多种用于扩展Office应用程序功能的模式,常见的有: 1.Office 自动化程序(A ...
- Java IO学习笔记三
Java IO学习笔记三 在整个IO包中,实际上就是分为字节流和字符流,但是除了这两个流之外,还存在了一组字节流-字符流的转换类. OutputStreamWriter:是Writer的子类,将输出的 ...
- NumPy学习笔记 三 股票价格
NumPy学习笔记 三 股票价格 <NumPy学习笔记>系列将记录学习NumPy过程中的动手笔记,前期的参考书是<Python数据分析基础教程 NumPy学习指南>第二版.&l ...
- Learning ROS for Robotics Programming Second Edition学习笔记(三) 补充 hector_slam
中文译著已经出版,详情请参考:http://blog.csdn.net/ZhangRelay/article/category/6506865 Learning ROS for Robotics Pr ...
- Learning ROS for Robotics Programming Second Edition学习笔记(三) indigo rplidar rviz slam
中文译著已经出版,详情请参考:http://blog.csdn.net/ZhangRelay/article/category/6506865 Learning ROS for Robotics Pr ...
随机推荐
- python之xlsx合并单元格
需求背景: 工作中将数据保存xlsx文件之后,里面每一列中有很多重复的看着很不美观,需要将每一列中的相同值合并起来,是表格看起来美观简洁 处理前 处理后 直接上代码(内涵注释讲解) "&qu ...
- bug处理记录:com.fasterxml.jackson.core.JsonParseException: Illegal unquoted character ((CTRL-CHAR, code 9)): has to be escaped using backslash to be included in string value at [Source:
1. 报错: com.fasterxml.jackson.core.JsonParseException: Illegal unquoted character ((CTRL-CHAR, code 9 ...
- Doris安装部署
下载安装 Doris运行在Linux环境中,推荐 CentOS 7.x 或者 Ubuntu 16.04 以上版本,同时你需要安装 Java 运行环境(JDK最低版本要求是8) 1.下载安装包 下载地址 ...
- 【深入浅出SpringCloud原理及实战】「SpringCloud-Alibaba系列」微服务模式搭建系统基础架构实战指南及版本规划踩坑分析
Spring Cloud Alibaba Nacos Discovery Spring Boot 应用程序在服务注册与发现方面提供和 Nacos 的无缝集成. 通过一些简单的注解,您可以快速来注册一个 ...
- 网络编程 UDP套接字
第十二章 UDP套接字 12.1 前言 上一章讲述了TCP通信方式,它是基于流的面向连接的网络通信.UDP是IP协议上的另一种传输协议. TCP和UDP都是端到端的通信协议,都处于TCP/IP网络模型 ...
- Spark通信框架RPC介绍
Spark通信框架RPC介绍 内容安排: 1.RPC原理 2.nio操作 3.netty简单的api 4.自定义RPC框架 RPC原理学习 什么是RPC RPC(Remote Procedure Ca ...
- vs code .net core Linux下离线安装Nuget包
本人第一次使用 vs code在linux下开发.net core项目,由于处于内网,无法通过在线安装,所以在遇见离线安装Nuget包时,耗费了一番功夫,网上也没有相关的,最后还是多个思路结合才解决的 ...
- Postman实现UI自动化测试
转载请注明出处️ 作者:测试蔡坨坨 原文链接:caituotuo.top/1db4fa44.html 你好,我是测试蔡坨坨. 看到这篇文章的标题,是不是有小伙伴会感到惊讶呢? Postman不是做接口 ...
- flutter Error:Cannot run with sound null safety, because the following dependencies don't support
学习flutter新版本的路上,真的是一天一个新惊喜啊 今天遇到的坑是 Flutter 升级高版本后,运行和build 报错 Error: Cannot run with sound null saf ...
- px批量转vw方法,适用于用户临时突发自适应需求,快速搞出项目多屏幕适应方案postcss-px-to-viewport,postcss.config.js配置
方案一: 1. 下载依赖 npm install postcss-import postcss-loader postcss-px-to-viewport --save-dev npm install ...