Description

Thousands of thousands years ago there was a small kingdom located in the middle of the Pacific Ocean. The territory of the kingdom consists two separated islands. Due to the impact of the ocean current, the shapes of both the islands became convex polygons. The king of the kingdom wanted to establish a bridge to connect the two islands. To minimize the cost, the king asked you, the bishop, to find the minimal distance between the boundaries of the two islands.

Input

The input consists of several test cases.
Each test case begins with two integers NM. (3 ≤ NM ≤ 10000)
Each of the next N lines contains a pair of coordinates, which describes the position of a vertex in one convex polygon.
Each of the next M lines contains a pair of coordinates, which describes the position of a vertex in the other convex polygon.
A line with N = M = 0 indicates the end of input.
The coordinates are within the range [-10000, 10000].

Output

For each test case output the minimal distance. An error within 0.001 is acceptable.

题目大意:给两个凸多边形,求两个凸多边形的最近距离

思路:用旋转卡壳,最短距离一定在两条支撑线之间(相当于切线吧大概……),详见代码,表达能力渣渣

PS:此题虽然没说点的顺序,DISCUSS里面有人说是乱序的,但实际上好像是逆序的(反正我不考虑点的顺序也能过就是了……)

代码(125MS):

 #include <cstdio>
#include <cstring>
#include <cmath>
#include <algorithm>
using namespace std; #define EPS 1e-8
#define MAXN 10010 inline int sgn(double x) {
if(fabs(x) < EPS) return ;
return x > ? : -;
} struct Point {
double x, y;
Point(double xx = , double yy = ): x(xx), y(yy) {}
};
//cross
inline double operator ^ (const Point &a, const Point &b) {
return a.x * b.y - a.y * b.x;
} inline double operator * (const Point &a, const Point &b) {
return a.x * b.x + a.y * b.y;
} inline Point operator - (const Point &a, const Point &b) {
return Point(a.x - b.x, a.y - b.y);
} inline double dist(const Point &a, const Point &b) {
return sqrt((a.x - b.x) * (a.x - b.x) + (a.y - b.y) * (a.y - b.y));
} inline double Cross(Point o, Point s, Point e) {
return (s - o) ^ (e - o);
} struct Line {
Point s, e;
Line() {}
Line(Point ss, Point ee): s(ss), e(ee) {}
}; inline double Point_to_Line(const Point &p, const Line &L) {
return fabs(Cross(p, L.s, L.e)/dist(L.s, L.e));
} inline double Point_to_Seg(const Point &p, const Line &L) {
if(sgn((L.e - L.s) * (p - L.s)) < ) return dist(p, L.s);
if(sgn((L.s - L.e) * (p - L.e)) < ) return dist(p, L.e);
return Point_to_Line(p, L);
} inline double Seg_to_Seg(const Line &a, const Line &b) {
double ans1 = min(Point_to_Seg(a.s, b), Point_to_Seg(a.e, b));
double ans2 = min(Point_to_Seg(b.s, a), Point_to_Seg(b.e, a));
return min(ans1, ans2);
} inline double solve(Point *p, Point *q, int np, int nq) {
p[np] = p[];
q[nq] = q[];
int sp = , sq = ;
for(int i = ; i < np; ++i) if(sgn(p[i].y - p[sp].y) < ) sp = i;
for(int i = ; i < nq; ++i) if(sgn(q[i].y - q[sq].y) < ) sq = i;
double tmp, ans = dist(p[], q[]);
for(int i = ; i < np; ++i) {
while(sgn(tmp = (Cross(q[sq], p[sp], p[sp+]) - Cross(q[sq+],p[sp],p[sp+]))) < )
sq = (sq + ) % nq;
if(sgn(tmp) > )
ans = min(ans, Point_to_Seg(q[sq], Line(p[sp], p[sp+])));
else
ans = min(ans, Seg_to_Seg(Line(p[sp], p[sp+]), Line(q[sq], q[sq+])));
sp = (sp + ) % np;
}
return ans;
} Point p[MAXN], q[MAXN];
int np, nq; int main() {
while(scanf("%d%d", &np, &nq) != EOF) {
if(np == && nq == ) break;
for(int i = ; i < np; ++i)
scanf("%lf%lf", &p[i].x, &p[i].y);
for(int i = ; i < nq; ++i)
scanf("%lf%lf", &q[i].x, &q[i].y);
printf("%f\n", min(solve(p, q, np, nq), solve(q, p, nq, np)));
}
return ;
}

代码(141MS)(高度模板化):

 #include <cstdio>
#include <cstring>
#include <iostream>
#include <algorithm>
#include <cmath>
using namespace std; const int MAXN = ;
const double EPS = 1e-;
const double PI = acos(-1.0);//3.14159265358979323846
const double INF = ; inline int sgn(double x) {
return (x > EPS) - (x < -EPS);
} struct Point {
double x, y, ag;
Point() {}
Point(double x, double y): x(x), y(y) {}
void read() {
scanf("%lf%lf", &x, &y);
}
bool operator == (const Point &rhs) const {
return sgn(x - rhs.x) == && sgn(y - rhs.y) == ;
}
bool operator < (const Point &rhs) const {
if(y != rhs.y) return y < rhs.y;
return x < rhs.x;
}
Point operator + (const Point &rhs) const {
return Point(x + rhs.x, y + rhs.y);
}
Point operator - (const Point &rhs) const {
return Point(x - rhs.x, y - rhs.y);
}
Point operator * (const double &b) const {
return Point(x * b, y * b);
}
Point operator / (const double &b) const {
return Point(x / b, y / b);
}
double operator * (const Point &rhs) const {
return x * rhs.x + y * rhs.y;
}
double length() {
return sqrt(x * x + y * y);
}
Point unit() {
return *this / length();
}
void makeAg() {
ag = atan2(y, x);
}
void print() {
printf("%.10f %.10f\n", x, y);
}
};
typedef Point Vector; double dist(const Point &a, const Point &b) {
return (a - b).length();
} double cross(const Point &a, const Point &b) {
return a.x * b.y - a.y * b.x;
}
//ret >= 0 means turn right
double cross(const Point &sp, const Point &ed, const Point &op) {
return cross(sp - op, ed - op);
} double area(const Point& a, const Point &b, const Point &c) {
return fabs(cross(a - c, b - c)) / ;
}
//counter-clockwise
Point rotate(const Point &p, double angle, const Point &o = Point(, )) {
Point t = p - o;
double x = t.x * cos(angle) - t.y * sin(angle);
double y = t.y * cos(angle) + t.x * sin(angle);
return Point(x, y) + o;
} struct Seg {
Point st, ed;
double ag;
Seg() {}
Seg(Point st, Point ed): st(st), ed(ed) {}
void read() {
st.read(); ed.read();
}
void makeAg() {
ag = atan2(ed.y - st.y, ed.x - st.x);
}
};
typedef Seg Line; //ax + by + c > 0
Line buildLine(double a, double b, double c) {
if(sgn(a) == && sgn(b) == ) return Line(Point(sgn(c) > ? - : , INF), Point(, INF));
if(sgn(a) == ) return Line(Point(sgn(b), -c/b), Point(, -c/b));
if(sgn(b) == ) return Line(Point(-c/a, ), Point(-c/a, sgn(a)));
if(b < ) return Line(Point(, -c/b), Point(, -(a + c) / b));
else return Line(Point(, -(a + c) / b), Point(, -c/b));
} void moveRight(Line &v, double r) {
double dx = v.ed.x - v.st.x, dy = v.ed.y - v.st.y;
dx = dx / dist(v.st, v.ed) * r;
dy = dy / dist(v.st, v.ed) * r;
v.st.x += dy; v.ed.x += dy;
v.st.y -= dx; v.ed.y -= dx;
} bool isOnSeg(const Seg &s, const Point &p) {
return (p == s.st || p == s.ed) ||
(((p.x - s.st.x) * (p.x - s.ed.x) < ||
(p.y - s.st.y) * (p.y - s.ed.y) < ) &&
sgn(cross(s.ed, p, s.st) == ));
} bool isIntersected(const Point &s1, const Point &e1, const Point &s2, const Point &e2) {
return (max(s1.x, e1.x) >= min(s2.x, e2.x)) &&
(max(s2.x, e2.x) >= min(s1.x, e1.x)) &&
(max(s1.y, e1.y) >= min(s2.y, e2.y)) &&
(max(s2.y, e2.y) >= min(s1.y, e1.y)) &&
(cross(s2, e1, s1) * cross(e1, e2, s1) >= ) &&
(cross(s1, e2, s2) * cross(e2, e1, s2) >= );
} bool isIntersected(const Seg &a, const Seg &b) {
return isIntersected(a.st, a.ed, b.st, b.ed);
} bool isParallel(const Seg &a, const Seg &b) {
return sgn(cross(a.ed - a.st, b.ed - b.st)) == ;
} //return Ax + By + C =0 's A, B, C
void Coefficient(const Line &L, double &A, double &B, double &C) {
A = L.ed.y - L.st.y;
B = L.st.x - L.ed.x;
C = L.ed.x * L.st.y - L.st.x * L.ed.y;
}
//point of intersection
Point operator * (const Line &a, const Line &b) {
double A1, B1, C1;
double A2, B2, C2;
Coefficient(a, A1, B1, C1);
Coefficient(b, A2, B2, C2);
Point I;
I.x = - (B2 * C1 - B1 * C2) / (A1 * B2 - A2 * B1);
I.y = (A2 * C1 - A1 * C2) / (A1 * B2 - A2 * B1);
return I;
} bool isEqual(const Line &a, const Line &b) {
double A1, B1, C1;
double A2, B2, C2;
Coefficient(a, A1, B1, C1);
Coefficient(b, A2, B2, C2);
return sgn(A1 * B2 - A2 * B1) == && sgn(A1 * C2 - A2 * C1) == && sgn(B1 * C2 - B2 * C1) == ;
} double Point_to_Line(const Point &p, const Line &L) {
return fabs(cross(p, L.st, L.ed)/dist(L.st, L.ed));
} double Point_to_Seg(const Point &p, const Seg &L) {
if(sgn((L.ed - L.st) * (p - L.st)) < ) return dist(p, L.st);
if(sgn((L.st - L.ed) * (p - L.ed)) < ) return dist(p, L.ed);
return Point_to_Line(p, L);
} double Seg_to_Seg(const Seg &a, const Seg &b) {
double ans1 = min(Point_to_Seg(a.st, b), Point_to_Seg(a.ed, b));
double ans2 = min(Point_to_Seg(b.st, a), Point_to_Seg(b.ed, a));
return min(ans1, ans2);
} struct Poly {
int n;
Point p[MAXN];//p[n] = p[0]
void init(Point *pp, int nn) {
n = nn;
for(int i = ; i < n; ++i) p[i] = pp[i];
p[n] = p[];
}
double area() {
if(n < ) return ;
double s = p[].y * (p[n - ].x - p[].x);
for(int i = ; i < n; ++i)
s += p[i].y * (p[i - ].x - p[i + ].x);
return s / ;
}
};
//the convex hull is clockwise
void Graham_scan(Point *p, int n, int *stk, int &top) {//stk[0] = stk[top]
sort(p, p + n);
top = ;
stk[] = ; stk[] = ;
for(int i = ; i < n; ++i) {
while(top && cross(p[i], p[stk[top]], p[stk[top - ]]) <= ) --top;
stk[++top] = i;
}
int len = top;
stk[++top] = n - ;
for(int i = n - ; i >= ; --i) {
while(top != len && cross(p[i], p[stk[top]], p[stk[top - ]]) <= ) --top;
stk[++top] = i;
}
}
//use for half_planes_cross
bool cmpAg(const Line &a, const Line &b) {
if(sgn(a.ag - b.ag) == )
return sgn(cross(b.ed, a.st, b.st)) < ;
return a.ag < b.ag;
}
//clockwise, plane is on the right
bool half_planes_cross(Line *v, int vn, Poly &res, Line *deq) {
int i, n;
sort(v, v + vn, cmpAg);
for(i = n = ; i < vn; ++i) {
if(sgn(v[i].ag - v[i-].ag) == ) continue;
v[n++] = v[i];
}
int head = , tail = ;
deq[] = v[], deq[] = v[];
for(i = ; i < n; ++i) {
if(isParallel(deq[tail - ], deq[tail]) || isParallel(deq[head], deq[head + ]))
return false;
while(head < tail && sgn(cross(v[i].ed, deq[tail - ] * deq[tail], v[i].st)) > )
--tail;
while(head < tail && sgn(cross(v[i].ed, deq[head] * deq[head + ], v[i].st)) > )
++head;
deq[++tail] = v[i];
}
while(head < tail && sgn(cross(deq[head].ed, deq[tail - ] * deq[tail], deq[head].st)) > )
--tail;
while(head < tail && sgn(cross(deq[tail].ed, deq[head] * deq[head + ], deq[tail].st)) > )
++head;
if(tail <= head + ) return false;
res.n = ;
for(i = head; i < tail; ++i)
res.p[res.n++] = deq[i] * deq[i + ];
res.p[res.n++] = deq[head] * deq[tail];
res.n = unique(res.p, res.p + res.n) - res.p;
res.p[res.n] = res.p[];
return true;
} //ix and jx is the points whose distance is return, res.p[n - 1] = res.p[0], res must be clockwise
double dia_rotating_calipers(Poly &res, int &ix, int &jx) {
double dia = ;
int q = ;
for(int i = ; i < res.n - ; ++i) {
while(sgn(cross(res.p[i], res.p[q + ], res.p[i + ]) - cross(res.p[i], res.p[q], res.p[i + ])) > )
q = (q + ) % (res.n - );
if(sgn(dist(res.p[i], res.p[q]) - dia) > ) {
dia = dist(res.p[i], res.p[q]);
ix = i; jx = q;
}
if(sgn(dist(res.p[i + ], res.p[q]) - dia) > ) {
dia = dist(res.p[i + ], res.p[q]);
ix = i + ; jx = q;
}
}
return dia;
}
//a and b must be clockwise, find the minimum distance between two convex hull
double half_rotating_calipers(Poly &a, Poly &b) {
int sa = , sb = ;
for(int i = ; i < a.n; ++i) if(sgn(a.p[i].y - a.p[sa].y) < ) sa = i;
for(int i = ; i < b.n; ++i) if(sgn(b.p[i].y - b.p[sb].y) < ) sb = i;
double tmp, ans = dist(a.p[], b.p[]);
for(int i = ; i < a.n; ++i) {
while(sgn(tmp = cross(a.p[sa], a.p[sa + ], b.p[sb + ]) - cross(a.p[sa], a.p[sa + ], b.p[sb])) > )
sb = (sb + ) % (b.n - );
if(sgn(tmp) < ) ans = min(ans, Point_to_Seg(b.p[sb], Seg(a.p[sa], a.p[sa + ])));
else ans = min(ans, Seg_to_Seg(Seg(a.p[sa], a.p[sa + ]), Seg(b.p[sb], b.p[sb + ])));
sa = (sa + ) % (a.n - );
}
return ans;
} double rotating_calipers(Poly &a, Poly &b) {
return min(half_rotating_calipers(a, b), half_rotating_calipers(b, a));
} /*******************************************************************************************/ Poly a, b; double solve() {
double ans = 1e100;
for(int i = ; i < a.n; ++i)
for(int j = ; j < b.n; ++j) ans = min(ans, dist(a.p[i], b.p[j]));
return ans;
} int main() {
while(scanf("%d%d", &a.n, &b.n) != EOF) {
if(a.n == && b.n == ) break;
for(int i = ; i < a.n; ++i) a.p[i].read();
a.p[a.n++] = a.p[];
for(int i = ; i < b.n; ++i) b.p[i].read();
b.p[b.n++] = b.p[];
printf("%f\n", rotating_calipers(a, b));
//printf("%f\n", solve());
}
return ;
}

POJ 3608 Bridge Across Islands(计算几何の旋转卡壳)的更多相关文章

  1. POJ 3608 Bridge Across Islands(旋转卡壳,两凸包最短距离)

    Bridge Across Islands Time Limit: 1000MS   Memory Limit: 65536K Total Submissions: 7202   Accepted:  ...

  2. POJ 3608 Bridge Across Islands (旋转卡壳)

    [题目链接] http://poj.org/problem?id=3608 [题目大意] 求出两个凸包之间的最短距离 [题解] 我们先找到一个凸包的上顶点和一个凸包的下定点,以这两个点为起点向下一个点 ...

  3. POJ - 3608 Bridge Across Islands【旋转卡壳】及一些有趣现象

    给两个凸包,求这两个凸包间最短距离 旋转卡壳的基础题 因为是初学旋转卡壳,所以找了别人的代码进行观摩..然而发现很有意思的现象 比如说这个代码(只截取了关键部分) double solve(Point ...

  4. POJ 3608 Bridge Across Islands --凸包间距离,旋转卡壳

    题意: 给你两个凸包,求其最短距离. 解法: POJ 我真的是弄不懂了,也不说一声点就是按顺时针给出的,不用调整点顺序. 还是说数据水了,没出乱给点或给逆时针点的数据呢..我直接默认顺时针给的点居然A ...

  5. POJ 3608 Bridge Across Islands [旋转卡壳]

    Bridge Across Islands Time Limit: 1000MS   Memory Limit: 65536K Total Submissions: 10455   Accepted: ...

  6. ●POJ 3608 Bridge Across Islands

    题链: http://poj.org/problem?id=3608 题解: 计算几何,求两个凸包间的最小距离,旋转卡壳 两个凸包间的距离,无非下面三种情况: 所以可以基于旋转卡壳的思想,去求最小距离 ...

  7. POJ 3608 凸包间最短距离(旋转卡壳)

    Bridge Across Islands Time Limit: 1000MS   Memory Limit: 65536K Total Submissions: 11539   Accepted: ...

  8. 「POJ-3608」Bridge Across Islands (旋转卡壳--求两凸包距离)

    题目链接 POJ-3608 Bridge Across Islands 题意 依次按逆时针方向给出凸包,在两个凸包小岛之间造桥,求最小距离. 题解 旋转卡壳的应用之一:求两凸包的最近距离. 找到凸包 ...

  9. poj 3608 Bridge Across Islands

    题目:计算两个不相交凸多边形间的最小距离. 分析:计算几何.凸包.旋转卡壳.分别求出凸包,利用旋转卡壳求出对踵点对,枚举距离即可. 注意:1.利用向量法判断旋转,而不是计算角度:避免精度问题和TLE. ...

随机推荐

  1. redux和react-redux的使用详解

    我自己的理解redux就跟vue中的vuex差不多,都是数据管理器,话不多说,我们从经典的计数器案例开始讲解 使用redux实现计数器 创建如下的react项目,我习惯把每一个模块分块,才有这么多文件 ...

  2. Mac连接Linux服务器

    1.终端命令 a).打开Mac的命令终端 b).输入ssh -p 22 root@101.200.86.233 它会提示你输入密码,输入正确的密码之后,你就发现已经登陆成功了.(22: 端口号 roo ...

  3. Mybartis逆向工程

    Mybartis逆向工程 0.创建工程项目,切记莫用中文,亲测在运行时报错 1.Pom文件,使用mybatis-generator插件 <?xml version="1.0" ...

  4. [读书笔记] Spring MVC 学习指南 -- 第一章

    控制反转(Inversion of Control, IoC)/ 依赖注入: 比如说,类A依赖于类B,A需要调用B的某一个方法,那么在调用之前,类A必须先获得B的一个示例引用. 通常我们可以在A中写代 ...

  5. 阿里云centOS7.4上MySql5.6安装

    最近一个项目要部署在阿里云上,为了开发团队方便,我自费买了个ECS,先装个数据库给开发用. 因为之前都是在真机安装,与这次阿里云上的部署比起来,还是有点区别的. Mysql 1 安装mysql版本包 ...

  6. HTML5中的拖拽与拖放(drag&&drop)

    1.drag 当拖动某个元素时,将会依次触发下列事件: 1)dragstart:按下鼠标键并开始移动鼠标时,会触发该事件 2)drag:dragstart触发后,随即便触发drag事件,而且在元素被拖 ...

  7. Flask中那些特殊的装饰器

    模板相关的装饰器 @app.template_global() 用法: @app.template_global() # 记得加括号 def jiafa(a, b): # 这个方法每调用一次就需要传一 ...

  8. day 12 生成器和生成器函数以及各种推导式

    一.生成器    本质就是迭代器. 我们可以直接执⾏__next__()来执⾏ 以下⽣成器 一个一个的创建对象 创建生成器的方式: 1.生成器函数 2.通过生成器 表达式来获取生成器 3.类型转换(看 ...

  9. gem install ruby-odbc失败

    解决: brew install unixodbc gem install ruby-odbc -v '0.99998'

  10. A1092

    可输入内容为0-9,a-z,A-Z. 输入: 第一行输入任意字符串: 第二行输入期望字符串. 输出: 如果第一行包含了所有期望字符串,输出yes和多余字符个数: 如果第一行不能完全包含期望字符串,输出 ...