[翻译]Review——How to do Speech Recognition with Deep Learning
原文地址:https://medium.com/@ageitgey/machine-learning-is-fun-part-6-how-to-do-speech-recognition-with-deep-learning-28293c162f7a
How to do Speech Recognition with Deep Learning
如何用深度学习做语音识别
Andrew Ng 说语音识别从让人恼怒的不可靠到令人难以置信的有用中间只有4%的距离,是深度学习让这一切成为可能。
机器学习的过程不总是黑盒,我们将语音记录喂给神经网络,就可以得到纯文本输出。其过程如下如所示:

但问题是,每个人发音的习惯不同,同样说‘Hello’,有人语速极快,有人说的很慢。因此建立可靠的识别模型就需要一些小技巧。
一、将声音转换成比特
我们可以记录声波,然后将其用数字形式表示,并形成二维数组。

上面是最终效果。但声音被采集的原始形式是声波,比如下图就是‘Hello’的声音片段。

‘Hello’的声音片段比较复杂,先看一个简单的声音片段:

虽然声音是一维的,但加上时间属性后,我们可以将它转为二维图像:

这就是“采样”。我们对样本进行每秒千次的阅读便可以准确的记录它的数据。下图是“Hello”的前100个采样数据:

但又有一个问题,采样的数据就一定等于原数据吗?

理论上来说,只要以我们所需采集的数据最高频的两倍来采集数据,就可以完美呈现近似原音的效果。很多人以为采集数据次数越多,数据点越紧密效果越高,其实这是错误的。
二、预处理声音数据
拿到数据后,我们要对其进行预处理,这个过程会面临很多问题。比如,声音片段并不都是纯粹的标准样本,现实环境复杂多变,说话者可能是在嘈杂的环境下讲话,并且伴有严重的连读和口音,这都给语音识别增加了困难。
首先来看看我们以1/16,000次每秒为间隔采集到的数据:

在坐标系里绘制这些点集,可以得到近似原声波的图:

这个声音片段是由不同频率的声音复杂组合而成。为了使它更容易被神经网络处理,我们将其分离出低音部分,再分离出下一个低音部分,以此类推。然后将(从低到高)每个频段(frequency band)中的能量相加,我们就为各个类别的音频片段创建了一个指纹(fingerprint)。就像把一段音乐分离成一个个单独的音符一般。
这时需要借助傅里叶变换,它将复杂的声波分解为简单的声波,每一份频段所包含的能量不同,将能量相加,就能得到从低音到高音,每个频率范围的重要程度。以每 50hz 为一个频段的话,我们这 20 毫秒的音频所含有的能量从低频到高频就可以表示为下面的列表:

将其绘成声音图谱:

重复这个过程,最终会得到一个频谱图:

这样你能更清楚的发现声音模式,神经网络也更容易接收它。
三、从短声音里识别字符
经过处理的声音数据更容易被训练。将20毫秒的声音切片喂给神经网络,它会输出单个字母:

我们使用循环神经网络来处理数据,它具有预测功能。当我们将每个声音切片都依次喂给循环神经网络后,会得到如下映射:

其中每一列的红色块代表了每个声音切片最有可能对应的字母。
然后我们拿到的数据可能是这样的:
- HHHEE_LL_LLLOOO becomes HE_L_LO
- HHHUU_LL_LLLOOO becomes HU_L_LO
- AAAUU_LL_LLLOOO becomes AU_L_LO
先去掉下划线:
- HE_L_LO becomes HELLO
- HU_L_LO becomes HULLO
- AU_L_LO becomes AULLO
剩下的三种可能输出都是神经网络对于声音纯粹的解读。此时我们需要用到自然语言处理的数据库,基于大数据做训练匹配,从而选出出现可能性最大的词。但有时,可能性最大的词也许并不是你想要的结果。因此,此处仍有待完善的地方。
四、训练自己的语音识别模型
你得克服几乎无穷无尽的挑战:劣质麦克风、背景噪音、混响和回声、口音差异等等。你的训练数据需要囊括这所有的一切,才能确保神经网络可以接受它们。
[翻译]Review——How to do Speech Recognition with Deep Learning的更多相关文章
- 论文翻译:2015_DNN-Based Speech Bandwidth Expansion and Its Application to Adding High-Frequency Missing Features for Automatic Speech Recognition of Narrowband Speech
论文地址:基于DNN的语音带宽扩展及其在窄带语音自动识别中加入高频缺失特征的应用 论文代码:github 博客作者:凌逆战 博客地址:https://www.cnblogs.com/LXP-Never ...
- 论文阅读笔记“Attention-based Audio-Visual Fusion for Rubust Automatic Speech recognition”
关于论文的阅读笔记 论文的题目是“Attention-based Audio-Visual Fusion for Rubust Automatic Speech recognition”,翻译成中文为 ...
- 论文翻译:2020_TinyLSTMs: Efficient Neural Speech Enhancement for Hearing Aids
论文地址:TinyLSTMs:助听器的高效神经语音增强 音频地址:https://github.com/Bose/efficient-neural-speech-enhancement 引用格式:Fe ...
- Utterance-Wise Recurrent Dropout And Iterative Speaker Adaptation For Robust Monaural Speech Recognition
单声道语音识别的逐句循环Dropout迭代说话人自适应 WRBN(wide residual BLSTM network,宽残差双向长短时记忆网络) [2] J. Heymann, L. Dr ...
- FPGA 17最佳论文导读 ESE: Efficient Speech Recognition Engine with Compressed LSTM on FPGA
欢迎转载,转载请注明:本文出自Bin的专栏blog.csdn.net/xbinworld. 技术交流QQ群:433250724,欢迎对算法.机器学习技术感兴趣的同学加入. 后面陆续写一些关于神经网络加 ...
- Speech Recognition Grammar Specification Version 1.0 JavaScript TTS 文本发音
Speech Recognition Grammar Specification Version 1.0 https://www.w3.org/TR/speech-grammar/ W3C Recom ...
- Speech Recognition Java Code - HMM VQ MFCC ( Hidden markov model, Vector Quantization and Mel Filter Cepstral Coefficient)
Hi everyone,I have shared speech recognition code inhttps://github.com/gtiwari333/speech-recognition ...
- C#的语音识别 using System.Speech.Recognition;
using System; using System.Collections.Generic; using System.Linq; using System.Speech.Recognition; ...
- 第三篇:ASR(Automatic Speech Recognition)语音识别
ASR(Automatic Speech Recognition)语音识别: 百度语音--语音识别--python SDK文档: https://ai.baidu.com/docs#/ASR-Onli ...
随机推荐
- python常用模块之OS
os模块偏于文件目录管理 <1>.常用方法 工作目录: os.getcwd() 返回当前工作目录 os.chdir(dir) 更改当前工作目录,相当于cd 目录文件操作: os.mkdir ...
- postgres常用命令
1.登录 psql -U pname -d database // pname 表示postgres的登录用户名,database 则表示要访问的数据库 2.查看所有的数据库 \l 3.查看所有的表 ...
- 51 Nod 1024 Set
1024 矩阵中不重复的元素 1 秒 131,072 KB 10 分 2 级题 一个m*n的矩阵. 该矩阵的第一列是a^b,(a+1)^b,.....(a + n - 1)^b 第二列是a^( ...
- Schema Workbench 启动慢
原始是JDBC连接设定的时候需要在参数中增加下列选项 FILTER_SCHEMA_LIST 官方的解释是 就是去搜寻连接数据库的所有的表结构,表越大越慢. 也要把这选项去除,保存数据库链接,并重新登录 ...
- 【医学影像】《Dermatologist-level classification of skin cancer with deep neural networks》论文笔记
这是一篇关于皮肤癌分类的文章,核心就是分类器,由斯坦福大学团队发表,居然发到了nature上,让我惊讶又佩服,虽然在方法上没什么大的创新,但是论文本身的工作却意义重大,并且这篇17年见刊的文章,引用量 ...
- ubuntu安装TFTP
参考: http://wenku.baidu.com/view/76e70cd702d276a201292e2f.html?re=view http://wenku.baidu.com/view/ce ...
- Javascript 定时器的使用陷阱 (setInterval)
setTimeout(function(){ // 其他代码 setTimeout(arguments.callee, interval); }, interval); setInterval会产生回 ...
- oracle mysql的序列的新增、删除、修改及使用
序列的使用 参考文献: https://blog.csdn.net/meijory/article/details/51891529 1.序列介绍 序列: 是 oracle 提供的用于产生一系列唯一 ...
- java中+=与+的区别
public class QQ { public static void main(String[] args) throws ParseException { byte val1 = 5; doub ...
- (转)CentOS7 搭建LVS+keepalived负载均衡(一)
原文:http://blog.csdn.net/u012852986/article/details/52386306 CentOS7 搭建LVS+keepalived负载均衡(一) CentOS7 ...