BZOJ4650:[NOI2016]优秀的拆分——题解
https://www.lydsy.com/JudgeOnline/problem.php?id=4650
https://www.luogu.org/problemnew/show/P1117
如果一个字符串可以被拆分为 AABB 的形式,其中 A和 B是任意非空字符串,则我们称该字符串的这种拆分是优秀的。
例如,对于字符串 aabaabaa,如果令 A=aab,B=a,我们就找到了这个字符串拆分成 AABB的一种方式。
一个字符串可能没有优秀的拆分,也可能存在不止一种优秀的拆分。比如我们令 A=a,B=baa,也可以用 AABB表示出上述字符串;但是,字符串 abaabaa 就没有优秀的拆分。
现在给出一个长度为 n的字符串 S,我们需要求出,在它所有子串的所有拆分方式中,优秀拆分的总个数。这里的子串是指字符串中连续的一段。
以下事项需要注意:
1.出现在不同位置的相同子串,我们认为是不同的子串,它们的优秀拆分均会被记入答案。
2.在一个拆分中,允许出现 A=B。例如 cccc 存在拆分 A=B=c。
3.字符串本身也是它的一个子串。
这类题的方法还是见少了啊,听说神犇都是一眼秒的,果然还是有很大的差距啊,唉……
对于AABB,我们完全可以只考虑AA,这样令f[i]表示以i结尾的AA数量,g[i]表示以i开头的AA数量,那么显然就是sigma(f[i]g[i+1])。
对于AA怎么求,大体的思路和URAL1297:Palindrome求回文串是一样的,就是通过比较后缀的公共前缀来得到AA的长度,进而求出这段区间内f[i]g[i]的值。
但是这样显然是O(n^2)的。
我们用(黑)分(科)块(技)的思想,枚举l,将字符串分成l大小的块,则长度为l的AA一定最少跨过两个块,于是对于块边界点,求一次公共前缀和后缀,拼在一起就是我们所要的答案,复杂度调和级数O(nlogn)。
注意,为了让复杂度正确,我们对区间的f和g差分。
#include<cstdio>
#include<cmath>
#include<iostream>
#include<vector>
#include<cstring>
#include<algorithm>
#include<cctype>
using namespace std;
typedef long long ll;
const int N=2e6+;
char s[N];
int n,m,rk[N],height[N],sa[N],w[N],cas,dp[N][],lg[N];
int f[N],g[N];
inline int qpow(int a){return <<a;}
inline bool pan(int *x,int i,int j,int k){
int ti=i+k<n?x[i+k]:-;
int tj=j+k<n?x[j+k]:-;
return ti==tj&&x[i]==x[j];
}
void SA_init(){
int *x=rk,*y=height,r=;
for(int i=;i<r;i++)w[i]=;
for(int i=;i<n;i++)w[s[i]]++;
for(int i=;i<r;i++)w[i]+=w[i-];
for(int i=n-;i>=;i--)sa[--w[s[i]]]=i;
r=;x[sa[]]=;
for(int i=;i<n;i++)
x[sa[i]]=s[sa[i]]==s[sa[i-]]?r-:r++;
for(int k=;r<n;k<<=){
int yn=;
for(int i=n-k;i<n;i++)y[yn++]=i;
for(int i=;i<n;i++)
if(sa[i]>=k)y[yn++]=sa[i]-k;
for(int i=;i<r;i++)w[i]=;
for(int i=;i<n;i++)w[x[y[i]]]++;
for(int i=;i<r;i++)w[i]+=w[i-];
for(int i=n-;i>=;i--)sa[--w[x[y[i]]]]=y[i];
swap(x,y);r=;x[sa[]]=;
for(int i=;i<n;i++)
x[sa[i]]=pan(y,sa[i],sa[i-],k)?r-:r++;
}
}
inline void height_init(){
int i,j,k=;
for(int i=;i<=n;i++)rk[sa[i]]=i;
for(int i=;i<n;i++){
if(k)k--;
j=sa[rk[i]-];
while(s[i+k]==s[j+k])k++;
height[rk[i]]=k;
}
}
void st_init(){
for(int i=;i<=n;i++){
dp[i-][]=height[i];
lg[i]=lg[i-];
if((<<lg[i]+)==i)lg[i]++;
}
for(int j=;j<=lg[n];j++){
for(int i=;i<n;i++){
if(i+qpow(j)->=n)break;
dp[i][j]=min(dp[i][j-],dp[i+qpow(j-)][j-]);
}
}
}
int lcp(int a,int b){
int l=rk[a],r=rk[b];
if(r<l)swap(l,r);
l--;r--;
if(r<)return ;
l++;
int len=r-l+;
int k=lg[len];
int h=qpow(k);
return min(dp[l][k],dp[r-h+][k]);
}
int main(){
scanf("%d",&cas);
while(cas--){
memset(f,,sizeof(f));
memset(g,,sizeof(g));
cin>>s;
m=strlen(s),n=*m+;
s[m]='$';
for(int i=m+;i<n;i++){
s[i]=s[n-i-];
}
s[n++]=;
SA_init();
n--;
height_init();
st_init();
for(int l=;l<=m/;l++){
for(int i=,j=l;j<m;i+=l,j+=l){
int p=min(l,lcp(i,j));
int s=min(l,lcp(n-i-,n-j-));
if(p+s->=l){
f[j-s+l]++;f[j+p]--;
g[i-s+]++;g[i+p-l+]--;
}
}
}
ll ans=;
for(int i=;i<m;i++){
f[i]+=f[i-];
g[i]+=g[i-];
}
for(int i=;i<m-;i++){
ans+=(ll)f[i]*g[i+];
}
printf("%lld\n",ans);
}
return ;
}
+++++++++++++++++++++++++++++++++++++++++++
+本文作者:luyouqi233。 +
+欢迎访问我的博客:http://www.cnblogs.com/luyouqi233/+
+++++++++++++++++++++++++++++++++++++++++++
BZOJ4650:[NOI2016]优秀的拆分——题解的更多相关文章
- [UOJ#219][BZOJ4650][Noi2016]优秀的拆分
[UOJ#219][BZOJ4650][Noi2016]优秀的拆分 试题描述 如果一个字符串可以被拆分为 AABBAABB 的形式,其中 A 和 B 是任意非空字符串,则我们称该字符串的这种拆分是优秀 ...
- BZOJ4650 [NOI2016]优秀的拆分 【后缀数组】
题目 如果一个字符串可以被拆分为 AABBAABB 的形式,其中 AA 和 BB 是任意非空字符串,则我们称该字符串的这种拆 分是优秀的.例如,对于字符串 aabaabaa,如果令 A=aabA=aa ...
- 题解【bzoj4650 [NOI2016]优秀的拆分】
Description 求对每一个连续字串将它切割成形如 AABB 的形式的方案数之和 Solution 显然 AABB 是由两个 AA 串拼起来的 考虑维护两个数组 a[i] 和 b[i] ,其中 ...
- UOJ#219/BZOJ4650 [NOI2016]优秀的拆分 字符串 SA ST表
原文链接http://www.cnblogs.com/zhouzhendong/p/9025092.html 题目传送门 - UOJ#219 (推荐,题面清晰) 题目传送门 - BZOJ4650 题意 ...
- BZOJ4650 NOI2016优秀的拆分(后缀数组)
显然只要求出以每个位置开始的AA串数量就可以了,将其和反串同位置的结果乘一下,加起来就是答案.考虑对每种长度的字符串计数.若当前考虑的A串长度为x,我们每隔x个字符设一个关键点,求出相邻两关键点的后缀 ...
- [BZOJ4650][NOI2016]优秀的拆分(SAM构建SA)
关于解法这个讲的很清楚了,主要用了设关键点的巧妙思想. 主要想说的是一个刚学的方法:通过后缀自动机建立后缀树,再转成后缀数组. 后缀数组功能强大,但是最令人头疼的地方是模板太难背容易写错.用这个方法, ...
- BZOJ4650: [Noi2016]优秀的拆分
考场上没秒的话多拿5分并不划算的样子. 思想其实很简单嘛. 要统计答案,求以每个位置开始和结束的AA串数量就好了.那么枚举AA中A的长度L,每L个字符设一个关键点,这样AA一定经过相邻的两个关键点.计 ...
- bzoj千题计划317:bzoj4650: [Noi2016]优秀的拆分(后缀数组+差分)
https://www.lydsy.com/JudgeOnline/problem.php?id=4650 如果能够预处理出 suf[i] 以i结尾的形式为AA的子串个数 pre[i] 以i开头的形式 ...
- BZOJ4650: [Noi2016]优秀的拆分(hash 调和级数)
题意 题目链接 Sol NOI的题都这么良心么.. 先交个\(n^4\)暴力 => 75 hash优化一下 => 90 然后\(90\)到\(100\)分之间至少差了\(10\)难度台阶= ...
随机推荐
- 【springboot-01】整合quartz
1.什么是quartz? quartz是一个开源的定时任务框架,具备将定时任务持久化至数据库以及分布式环境下多节点调度的能力.当当的elastic-job便是以quartz为基础,结合zookeepe ...
- 「日常训练」Kefa and Dishes(Codeforces Round #321 Div. 2 D)
题意与分析(CodeForces 580D) 一个人有\(n\)道菜,然后要点\(m\)道菜,每道菜有一个美味程度:然后给你了很多个关系,表示如果\(x\)刚好在\(y\)前面做的话,他的美味程度就会 ...
- Jmeter 接口自动化执行报错 无法找到类或者类的方法
写好的自动化测试脚本在PC以及mac book 都执行正确,但是放到linux集成环境时就一直报错,报错类似如下 [jmeter] // Debug: eval: nameSpace = NameSp ...
- ionic ios样式偏移解决方案。
在css属性内增加: .item-ios [item-end] { //解决ios系统上尾部图标出现重影而增加的格式. margin: 0px -15.3px 0px 0px; margin-bott ...
- Mount qcow2 image
1.Mount a qcow2 image qemu-nbd - QEMU Disk Network Block Device Server: Export QEMU disk image using ...
- 深度学习笔记 (二) 在TensorFlow上训练一个多层卷积神经网络
上一篇笔记主要介绍了卷积神经网络相关的基础知识.在本篇笔记中,将参考TensorFlow官方文档使用mnist数据集,在TensorFlow上训练一个多层卷积神经网络. 下载并导入mnist数据集 首 ...
- 在 CentOS 下手工安装 Docker v1.1x
Docker在 centos 6.x 下面默认最新的版本是1.7, 然而这个并不符合我的实际需求, 尤其我需要 docker-compose 来作为编配工具部署swarm, 所以我只有手工安装了. 首 ...
- php面试的那些“黑话”
以下是一些常见的面试暗语,求职者一定要弄清楚其中蕴含的深意,不然可能“躺着也中枪”,最后只能铩羽而归. (1)请把简历先放在这,有消息我们会通知你的 面试官说出这句话,则表明他对你已经“兴趣不大”,为 ...
- c# html 导出excel
[CustomAuthorize] public FileResult ExportCustomerManagerVisitExcel(string dateType, string r ...
- [C++] Variables and Basic Types
Getting Started compile C++ program source $ g++ -o prog grog1.cc run C++ program $ ./prog The libra ...