【最短路径】 SPFA算法
上一期介绍到了SPFA算法,只是一笔带过,这一期让我们详细的介绍一下SPFA。
1 SPFA原理介绍
SPFA算法和dijkstra算法特别像,总感觉自己讲的不行,同学说我的博客很辣鸡,推荐一个视频讲解,想看点这里,算法思路如下:
1)和dijkstra一样初始化,定义一个dis[ ]数组,除了源点赋成0之外其它点都赋成正无穷,然后定义一个队列q。
2)把队列q的队首元素取出,标志为不在队中,将其作为中继点对这个队首元素的所有出边进行松弛操作(不知道松弛操作请看这里),修改完dis值后,判断每一个修改过dis值的元素是否在队列q中,如果不在,就放入队尾;然后判断这个数入队的次数,如果大于n(n为点的个数),那就说明出现了负权回路,算法结束,否则继续。
3)不断循环,直到队列为空。
2 实现过程中的一些问题
- question:怎么标志出队?
answer:可以定义一个vis[ ]数组,最开始全部为0,表示都不在队列中,每入队一个元素x,就把vis[x]赋成1,每出队一个元素就赋值成0。
- question:怎么判断一个数入队次数?
answer:可以定义一个num[ ]数组,每入队一个元素x,就num[x]++;这个可以不写,因为题目一般不会出现负权回路。
- question:怎么判断队列为空?
answer:最流行的写法是while(!q.empty()),但是不太好理解,我一般会写成while(s.size()),和前一句意思相同。
3 图解演示

//这个图解做了一上午,可能讲的不好,不喜勿喷
4 代码奉上:
void SPFA()
{
for(int i=;i<=n;i++)
dis[i]=inf;
queue<int>q;
q.push();vis[]=;dis[]=;
while(q.size())
{
x=q.front();q.pop();vis[x]=;
for(int i=head[x];i;i=a[i].next)
{
int s=a[i].to;
if(dis[s]>dis[x]+a[i].cost)
{
dis[s]=dis[x]+a[i].cost;
if(vis[s]==)
{
vis[s]=;
q.push(s);
}
}
}
}
}
5 算法优化
新更博客:SPFA算法优化
【最短路径】 SPFA算法的更多相关文章
- 最短路径--SPFA 算法
适用范围:给定的图存在负权边,这时类似Dijkstra等算法便没有了用武之地,而Bellman-Ford算法的复杂度又过高,SPFA算法便派上用场了. 我们约定有向加权图G不存在负权回路,即最短路径一 ...
- 最短路径——SPFA算法
一.前提引入 我们学过了Bellman-Ford算法,现在又要提出这个SPFA算法,为什么呢? 考虑一个随机图(点和边随机生成),除了已确定最短路的顶点与尚未确定最短路的顶点之间的边,其它的边所做的都 ...
- 图的最短路径-----------SPFA算法详解(TjuOj2831_Wormholes)
这次整理了一下SPFA算法,首先相比Dijkstra算法,SPFA可以处理带有负权变的图.(个人认为原因是SPFA在进行松弛操作时可以对某一条边重复进行松弛,如果存在负权边,在多次松弛某边时可以更新该 ...
- 最短路径----SPFA算法
求最短路径的算法有许多种,除了排序外,恐怕是ACM界中解决同一类问题算法最多的了.最熟悉的无疑是Dijkstra,接着是Bellman-Ford,它们都可以求出由一个源点向其他各点的最短路径:如果我们 ...
- 最短路径SPFA算法(邻接表存法)
queue <int> Q; void SPFA (int s) { int i, v; for(int i=0; i<=n; i++) dist[i]=INF; //初始化每点i到 ...
- 洛谷P3371单源最短路径SPFA算法
SPFA同样是一种基于贪心的算法,看过之前一篇blog的读者应该可以发现,SPFA和堆优化版的Dijkstra如此的相似,没错,但SPFA有一优点是Dijkstra没有的,就是它可以处理负边的情况. ...
- 最短路径问题的Dijkstra和SPFA算法总结
Dijkstra算法: 解决带非负权重图的单元最短路径问题.时间复杂度为O(V*V+E) 算法精髓:维持一组节点集合S,从源节点到该集合中的点的最短路径已被找到,算法重复从剩余的节点集V-S中选择最短 ...
- Bellman-Ford & SPFA 算法——求解单源点最短路径问题
Bellman-Ford算法与另一个非常著名的Dijkstra算法一样,用于求解单源点最短路径问题.Bellman-ford算法除了可求解边权均非负的问题外,还可以解决存在负权边的问题(意义是什么,好 ...
- 最短路径算法之四——SPFA算法
SPAF算法 求单源最短路的SPFA算法的全称是:Shortest Path Faster Algorithm,该算法是西南交通大学段凡丁于1994年发表的. 它可以在O(kE)的时间复杂度内求出源点 ...
- 数据结构与算法--最短路径之Bellman算法、SPFA算法
数据结构与算法--最短路径之Bellman算法.SPFA算法 除了Floyd算法,另外一个使用广泛且可以处理负权边的是Bellman-Ford算法. Bellman-Ford算法 假设某个图有V个顶点 ...
随机推荐
- Django ORM常用的函数以及修饰词
函数名称或修饰词 说明 filter() 返回符合指定条件的QuerySet exclude() 返回不符合指定条件的QuerySet ordey_by() 串接到QuerySet之后,针对某一指定的 ...
- Linux 下访问Windows共享目录
5.安装cifs-utils软件包 # yum install cifs-utils 貌似可以不用安装这个包. 6.在Linux下创建一个挂载点 # mkdir /mnt/Windows 7.挂载W ...
- 【TYVJ】P1039 忠诚2
[算法]线段树 [注意]修改或查询区间时,若区间能包含某棵子树就立即返回,否则线段树就失去了意义. #include<cstdio> #include<algorithm> u ...
- 每个 Java 开发者都应该知道的 5 个注解
自 JDK5 推出以来,注解已成为Java生态系统不可缺少的一部分.虽然开发者为Java框架(例如Spring的@Autowired)开发了无数的自定义注解,但编译器认可的一些注解非常重要. 在本文中 ...
- 静态资源(JS/CSS)存储在localStorage
一.简单了解SEO SEO由英文Search Engine Optimization缩写而来, 中文意译为“搜索引擎优化”.SEO是指从自然搜索结果获得网站流量的技术和过程. 搜索引擎不优化的网站分为 ...
- hdu 2795 Billboard(线段树+单点更新)
题目链接:http://acm.hdu.edu.cn/showproblem.php?pid=2795 Billboard Time Limit: 20000/8000 MS (Java/Others ...
- 【转】debian下的update-rc.d的使用
在Linux系统下,一个Services的启动.停止以及重启通常是通过/etc/init.d目录下的脚本来控制的.然而,在启动或改变运行级别时, 是在/etc/rcX.d中来搜索脚本.其中X是运行级别 ...
- 【DeepLearning学习笔记】Coursera课程《Neural Networks and Deep Learning》——Week2 Neural Networks Basics课堂笔记
Coursera课程<Neural Networks and Deep Learning> deeplearning.ai Week2 Neural Networks Basics 2.1 ...
- selenium===介绍
selenium 是支持java.python.ruby.php.C#.JavaScript . 从语言易学性来讲,首选ruby ,python 从语言应用广度来讲,首选java.C#.php. 从语 ...
- printk一些技巧【转】
转自:http://haohetao.iteye.com/blog/1147791 转自:http://blog.csdn.net/wbd880419/article/details/73530550 ...