【组合计数】UVA - 11538 - Chess Queen
考虑把皇后放在同一横排或者统一纵列,答案为nm(m-1)和nm(n-1),显然。
考虑同一对角线的情况不妨设,n<=m,对角线从左到右依次为1,2,3,...,n-1,n,n,n,...,n(m-n+1个n),n-1,n-2,...,2,1
还有另一个方向的对角线,所以算出来之后要乘二。
即答案为2(2*Σ(i to n-1) (i(i-1)) + (m-n+1)n(n-1))
Σ(i to n-1) (i(i-1))怎么算呢?
可以拆成Σi² - Σi , i²的前缀和公式我就不推了。
#include<cstdio>
#include<iostream>
#include<algorithm>
using namespace std;
typedef long long ll;
ll n,m;
int main(){
while(1){
cin>>n>>m;
if(n==0 && m==0){
break;
}
if(n>m){
swap(n,m);
}
cout<<2ll*n*(n-1ll)*(3*m-n-1ll)/3ll+n*m*(m-1ll)+n*m*(n-1ll)<<endl;
}
return 0;
}
【组合计数】UVA - 11538 - Chess Queen的更多相关文章
- Uva 11538 - Chess Queen
http://uva.onlinejudge.org/index.php?option=com_onlinejudge&Itemid=8&page=show_problem&p ...
- 组合数学 UVa 11538 Chess Queen
Problem A Chess Queen Input: Standard Input Output: Standard Output You probably know how the game o ...
- UVa 11538 Chess Queen (排列组合计数)
题意:给定一个n*m的棋盘,那么问你放两个皇后相互攻击的方式有多少种. 析:皇后攻击,肯定是行,列和对角线,那么我们可以分别来求,行和列其实都差不多,n*A(m, 2) + m*A(n, 2), 这是 ...
- uva 11538 Chess Queen<计数>
链接:http://uva.onlinejudge.org/index.php?option=com_onlinejudge&Itemid=8&page=show_problem&am ...
- 【基本计数方法---加法原理和乘法原理】UVa 11538 - Chess Queen
题目链接 题意:给出m行n列的棋盘,当两皇后在同行同列或同对角线上时可以互相攻击,问共有多少种攻击方式. 分析:首先可以利用加法原理分情况讨论:①两皇后在同一行:②两皇后在同一列:③两皇后在同一对角线 ...
- bzoj 2281 [Sdoi2011]黑白棋(博弈+组合计数)
黑白棋(game) [问题描述] 小A和小B又想到了一个新的游戏. 这个游戏是在一个1*n的棋盘上进行的,棋盘上有k个棋子,一半是黑色,一半是白色. 最左边是白色棋子,最右边是黑色棋子,相邻的棋子颜色 ...
- BZOJ 4555: [Tjoi2016&Heoi2016]求和 [分治FFT 组合计数 | 多项式求逆]
4555: [Tjoi2016&Heoi2016]求和 题意:求\[ \sum_{i=0}^n \sum_{j=0}^i S(i,j)\cdot 2^j\cdot j! \\ S是第二类斯特林 ...
- BZOJ 4555: [Tjoi2016&Heoi2016]求和 [FFT 组合计数 容斥原理]
4555: [Tjoi2016&Heoi2016]求和 题意:求\[ \sum_{i=0}^n \sum_{j=0}^i S(i,j)\cdot 2^j\cdot j! \\ S是第二类斯特林 ...
- 【BZOJ5491】[HNOI2019]多边形(模拟,组合计数)
[HNOI2019]多边形(模拟,组合计数) 题面 洛谷 题解 突然特别想骂人,本来我考场现切了的,结果WA了几个点,刚刚拿代码一看有个地方忘记取模了. 首先发现终止态一定是所有点都向\(n\)连边( ...
随机推荐
- bzoj 1188 SG函数
首先我们可以把一个石子看成一个单独的游戏,那么我们可以发现所有位置的石子至于奇偶有关,因为某一个人操作其中的一个石子,我们可以用相同的石子做相同的操作,所以我们只需要保留下所有位置的01,那么对于每个 ...
- hdu 1102 Constructing Roads (最小生成树)
题目链接:http://acm.hdu.edu.cn/showproblem.php?pid=1102 Constructing Roads Time Limit: 2000/1000 MS (Jav ...
- ThinkSnS v4后台任意文件下载漏洞
漏洞文件: /apps/admin/Lib/Action/UpgradeAction.class.php 主要问题还是出现在了180行直接将远程获取到的图片直接保存. 文中可见并没有做任何的对$dow ...
- C语言将字符串转换成对应的数字(十进制、十六进制)【转】
转自:http://wawlian.iteye.com/blog/1315133 问题1:讲一个十进制数字的字符串表示转换成对应的整数.举例:将“”转换成整数1234. C代码 收藏代码 /*将字符串 ...
- linux 命令行远程登录 后台运行命令的方法
linux 命令行远程登录 后台运行命令的方法 http://blog.csdn.net/isuker/article/details/55061595 Linux 技巧:让进程在后台可靠运行的几种方 ...
- visual studio 个性化设置
尼马visual studio 的注释建设的真垃圾 Ctrl+K+C Ctrl+K+U, 通过工具->选项->环境->键盘->命令包含中搜索“注释选定内容”,分配成 Ctrl+ ...
- 关于时间日期的一些操作--java
# 原创,转载请留言联系 1.获取当前时间 public static void main(String[] args) { Date d1 = new Date(); System.out.prin ...
- kafka 设置消费者线程数
http://blog.csdn.net/derekjiang/article/details/9053863 分布式发布订阅消息系统 Kafka 架构设计 - 目前见到的最好的Kafka中文文章 M ...
- 一、python基础相关知识体系
python基础 a. Python(解释型语言.弱类型语言)和其他语言的区别? 一.编译型语言:一次性,将全部的程序编译成二进制文件,然后在运行.(c,c++ ,go) 运行速度快.开发效率低 二. ...
- hdu 1533(最小费用最大流)
Going Home Time Limit: 10000/5000 MS (Java/Others) Memory Limit: 65536/32768 K (Java/Others)Total ...