题目链接:http://poj.org/problem?id=1269

题面:

Description

We all know that a pair of distinct points on a plane defines a line and that a pair of lines on a plane will intersect in one of three ways: 1) no intersection because they are parallel, 2) intersect in a line because they are on top of one another (i.e. they are the same line), 3) intersect in a point. In this problem you will use your algebraic knowledge to create a program that determines how and where two lines intersect.
Your program will repeatedly read in four points that define two lines in the x-y plane and determine how and where the lines intersect. All numbers required by this problem will be reasonable, say between -1000 and 1000.

Input

The first line contains an integer N between 1 and 10 describing how many pairs of lines are represented. The next N lines will each contain eight integers. These integers represent the coordinates of four points on the plane in the order x1y1x2y2x3y3x4y4. Thus each of these input lines represents two lines on the plane: the line through (x1,y1) and (x2,y2) and the line through (x3,y3) and (x4,y4). The point (x1,y1) is always distinct from (x2,y2). Likewise with (x3,y3) and (x4,y4).

Output

There should be N+2 lines of output. The first line of output should read INTERSECTING LINES OUTPUT. There will then be one line of output for each pair of planar lines represented by a line of input, describing how the lines intersect: none, line, or point. If the intersection is a point then your program should output the x and y coordinates of the point, correct to two decimal places. The final line of output should read "END OF OUTPUT".

Sample Input

5
0 0 4 4 0 4 4 0
5 0 7 6 1 0 2 3
5 0 7 6 3 -6 4 -3
2 0 2 27 1 5 18 5
0 3 4 0 1 2 2 5

Sample Output

INTERSECTING LINES OUTPUT
POINT 2.00 2.00
NONE
LINE
POINT 2.00 5.00
POINT 1.07 2.20
END OF OUTPUT
思路:本题求的就是两条直线之间的位置关系,如果平行输出“NONE”,相交输出“POINT”和交点坐标,重合就输出“LINE”。判断两条直线是否平行则判断两条直线的单位方向向量是否相等或相反(即斜率是否相等),如果满足则是平行或重合,否则就是相交,相交就调用求交点的函数求出交点即可;而判断是否重合只需判断一条直线上的某一点是否在另一条直线上即可。
代码实现如下:
 #include <cstdio>
#include <cmath>
#include <algorithm>
using namespace std; struct Point {
double x, y;
Point (double x = , double y = ) : x(x), y(y) {}
}; typedef Point Vector; int n;
Point A, B, C, D; Vector operator + (Vector A, Vector B) {
return Vector(A.x + B.x, A.y + B.y);
} Vector operator - (Vector A, Vector B) {
return Vector(A.x - B.x, A.y - B.y);
} Vector operator * (Vector A, double p) {
return Vector(A.x * p, A.y * p);
} bool operator < (const Point& a, const Point& b) {
return a.x < b.x || (a.x == b.x && a.y < b.y);
} const double eps = 1e-;
int dcmp(double x) {
if(fabs(x) < eps)
return ;
else
return x < ? - : ;
} bool operator == (const Point& a, const Point& b) {
return dcmp(a.x - b.x) == && dcmp(a.y - b.y) == ;
} double Dot(Vector A, Vector B) {
return A.x * B.x + A.y * B.y;
} double Length(Vector A) {
return sqrt(Dot(A, A));
} double Cross(Vector A, Vector B) {
return A.x * B.y - A.y * B.x;
} //求单位方向向量
Vector Unit_direction_vector(Vector w) {
return Vector(w.x / Length(w), w.y / Length(w));
} //判断两直线是否不相交
bool isIntersection(Vector A, Vector B) {
return Unit_direction_vector(A) == Unit_direction_vector(B) || Unit_direction_vector(Vector(- A.x, - A.y)) == Unit_direction_vector(B);
} Point GetLineIntersection(Point P, Vector v, Point Q, Vector w) {
Vector u = P - Q;
double t = Cross (w, u) / Cross(v, w);
return P + v * t;
} //判断两直线是否重合只要判断是否有公共点即可
bool OnLine(Point p, Point a1, Point a2) {
return dcmp(Cross(a1 - p, a2 - p)) == ;
} int main() {
while(~scanf("%d", &n)) {
printf("INTERSECTING LINES OUTPUT\n");
while(n--) {
scanf("%lf%lf%lf%lf%lf%lf%lf%lf", &A.x, &A.y, &B.x, &B.y, &C.x, &C.y, &D.x, &D.y);
if(isIntersection(A - B, C - D)) {
if(OnLine(A, C, D)) {
printf("LINE\n");
} else {
printf("NONE\n");
}
} else {
Point P = GetLineIntersection(A, A - B, C, C - D);
printf("POINT %.2f %.2f\n", P.x, P.y);
}
}
printf("END OF OUTPUT\n");
}
}

Intersecting Lines (计算几何基础+判断两直线的位置关系)的更多相关文章

  1. TOYS(计算几何基础+点与直线的位置关系)

    题目链接:http://poj.org/problem?id=2318 题面: TOYS Time Limit: 2000MS   Memory Limit: 65536K Total Submiss ...

  2. Intersecting Lines---poj1269(求两直线的位置关系)

    题目链接:http://poj.org/problem?id=1269 题意:给你两条直线上的任意不同的两点,然后求两条直线的位置关系,如果相交于一点输出该点坐标; #include<iostr ...

  3. POJ P2318 TOYS与POJ P1269 Intersecting Lines——计算几何入门题两道

    rt,计算几何入门: TOYS Calculate the number of toys that land in each bin of a partitioned toy box. Mom and ...

  4. POJ 1269 Intersecting Lines(判断两直线位置关系)

    题目传送门:POJ 1269 Intersecting Lines Description We all know that a pair of distinct points on a plane ...

  5. poj 1269 判断直线的位置关系

    题目链接 题意 判断两条直线的位置关系,重合/平行/相交(求交点). 直线以其上两点的形式给出(点坐标为整点). 思路 写出直线的一般式方程(用\(gcd\)化为最简), 计算\(\begin{vma ...

  6. 判断两条直线的位置关系 POJ 1269 Intersecting Lines

    两条直线可能有三种关系:1.共线     2.平行(不包括共线)    3.相交. 那给定两条直线怎么判断他们的位置关系呢.还是用到向量的叉积 例题:POJ 1269 题意:这道题是给定四个点p1, ...

  7. POJ 1269 /// 判断两条直线的位置关系

    题目大意: t个测试用例 每次给出一对直线的两点 判断直线的相对关系 平行输出NODE 重合输出LINE 相交输出POINT和交点坐标 1.直线平行 两向量叉积为0 2.求两直线ab与cd交点 设直线 ...

  8. 【POJ 1269】判断两直线相交

    题 利用叉积解方程 #include <cstdio> #define MAX 1<<31 #define dd double int xmult(dd x1,dd y1,dd ...

  9. [置顶] 如何判断两个IP大小关系及是否在同一个网段中

    功能点  判断某个IP地址是否合法 判断两个IP地址是否在同一个网段中 判断两个IP地址的大小关系 知识准备 IP协议 子网掩码 Java 正则表达式 基本原理 IP地址范围 0.0.0.0- 255 ...

随机推荐

  1. TCP系列40—拥塞控制—3、慢启动和拥塞避免概述

    本篇中先介绍一下慢启动和拥塞避免的大概过程,下一篇中将会给出多个linux下reno拥塞控制算法的wireshark示例,并详细解释慢启动和拥塞避免的过程. 一.慢启动(slow start) 一个T ...

  2. 原生js移动端可拖动进度条插件

    该插件最初的想法来自网上的一篇文章,直达链接:https://www.cnblogs.com/libin-1/p/6220056.html 笔者因为业务需要寻找到这个插件,然后拿来用之,发现各种不方便 ...

  3. Python的压缩文件处理 zipfile & tarfile

    本文从以下两个方面, 阐述Python的压缩文件处理方式: 一. zipfile 二. tarfile 一. zipfile 虽然叫zipfile,但是除了zip之外,rar,war,jar这些压缩( ...

  4. sql server 带输入输出参数的分页存储过程(效率最高)

    create procedure proc_page_withtopmax( @pageIndex int,--页索引 @pageSize int,--每页显示数 @pageCount int out ...

  5. linux svn apache

    借助apache运行的svn服务器 一:安装Apache HTTP Server 1.安装Apache HTTP Server yum install httpd httpd-devel -y 2.修 ...

  6. iOS-系统 图片、视频 管理控制器UIImagePickerController

        UIImagePickerController 是一个管理系统多媒体文件库(相册)中的图片.视频文件的视图控制器,诞生于iOS4之前,虽然功能不是很完善,我们仍可以用这个视图控制器做一些有创造 ...

  7. bzoj1143-祭祀

    题目 给出一个有向无环图,要在上面安放祭祀点.两个祭祀点必须不可达,求最多能安放多少个祭祀点. 分析 由于一条无法再延伸链上只能安放一个祭祀点,而我们要求的是最多能安放祭祀点的个数,所以要求的就是最长 ...

  8. 【bzoj3142】[Hnoi2013]数列 数学

    题目描述 求满足 $1\le a_i\le n\ ,\ 1\le a_{i+1}-a_i\le m$ 的序列 $a_1...a_k$ 的个数模 $p$ 的值. 输入 只有一行用空格隔开的四个数:N.K ...

  9. 【题解】HNOI2018转盘

    何学长口中所说的‘一眼题’……然而实际上出出来我大HN全省也只有一个人A…… 首先我们需要发现一个性质:我们永远可以在最后一圈去标记所有的物品.倘若我们反复转圈,那么这完全是可以省下来的.所以我们破环 ...

  10. [POI2014]FAR-FarmCraft 树形DP + 贪心思想

    (感觉洛谷上题面那一小段中文根本看不懂啊,好多条件都没讲,直接就是安装也要一个时间啊,,,明明不止啊!还好有百度翻译......) 题意:一棵树,一开始在1号节点(root),边权都为1,每个点有点权 ...