题目链接:http://poj.org/problem?id=1269

题面:

Description

We all know that a pair of distinct points on a plane defines a line and that a pair of lines on a plane will intersect in one of three ways: 1) no intersection because they are parallel, 2) intersect in a line because they are on top of one another (i.e. they are the same line), 3) intersect in a point. In this problem you will use your algebraic knowledge to create a program that determines how and where two lines intersect.
Your program will repeatedly read in four points that define two lines in the x-y plane and determine how and where the lines intersect. All numbers required by this problem will be reasonable, say between -1000 and 1000.

Input

The first line contains an integer N between 1 and 10 describing how many pairs of lines are represented. The next N lines will each contain eight integers. These integers represent the coordinates of four points on the plane in the order x1y1x2y2x3y3x4y4. Thus each of these input lines represents two lines on the plane: the line through (x1,y1) and (x2,y2) and the line through (x3,y3) and (x4,y4). The point (x1,y1) is always distinct from (x2,y2). Likewise with (x3,y3) and (x4,y4).

Output

There should be N+2 lines of output. The first line of output should read INTERSECTING LINES OUTPUT. There will then be one line of output for each pair of planar lines represented by a line of input, describing how the lines intersect: none, line, or point. If the intersection is a point then your program should output the x and y coordinates of the point, correct to two decimal places. The final line of output should read "END OF OUTPUT".

Sample Input

5
0 0 4 4 0 4 4 0
5 0 7 6 1 0 2 3
5 0 7 6 3 -6 4 -3
2 0 2 27 1 5 18 5
0 3 4 0 1 2 2 5

Sample Output

INTERSECTING LINES OUTPUT
POINT 2.00 2.00
NONE
LINE
POINT 2.00 5.00
POINT 1.07 2.20
END OF OUTPUT
思路:本题求的就是两条直线之间的位置关系,如果平行输出“NONE”,相交输出“POINT”和交点坐标,重合就输出“LINE”。判断两条直线是否平行则判断两条直线的单位方向向量是否相等或相反(即斜率是否相等),如果满足则是平行或重合,否则就是相交,相交就调用求交点的函数求出交点即可;而判断是否重合只需判断一条直线上的某一点是否在另一条直线上即可。
代码实现如下:
 #include <cstdio>
#include <cmath>
#include <algorithm>
using namespace std; struct Point {
double x, y;
Point (double x = , double y = ) : x(x), y(y) {}
}; typedef Point Vector; int n;
Point A, B, C, D; Vector operator + (Vector A, Vector B) {
return Vector(A.x + B.x, A.y + B.y);
} Vector operator - (Vector A, Vector B) {
return Vector(A.x - B.x, A.y - B.y);
} Vector operator * (Vector A, double p) {
return Vector(A.x * p, A.y * p);
} bool operator < (const Point& a, const Point& b) {
return a.x < b.x || (a.x == b.x && a.y < b.y);
} const double eps = 1e-;
int dcmp(double x) {
if(fabs(x) < eps)
return ;
else
return x < ? - : ;
} bool operator == (const Point& a, const Point& b) {
return dcmp(a.x - b.x) == && dcmp(a.y - b.y) == ;
} double Dot(Vector A, Vector B) {
return A.x * B.x + A.y * B.y;
} double Length(Vector A) {
return sqrt(Dot(A, A));
} double Cross(Vector A, Vector B) {
return A.x * B.y - A.y * B.x;
} //求单位方向向量
Vector Unit_direction_vector(Vector w) {
return Vector(w.x / Length(w), w.y / Length(w));
} //判断两直线是否不相交
bool isIntersection(Vector A, Vector B) {
return Unit_direction_vector(A) == Unit_direction_vector(B) || Unit_direction_vector(Vector(- A.x, - A.y)) == Unit_direction_vector(B);
} Point GetLineIntersection(Point P, Vector v, Point Q, Vector w) {
Vector u = P - Q;
double t = Cross (w, u) / Cross(v, w);
return P + v * t;
} //判断两直线是否重合只要判断是否有公共点即可
bool OnLine(Point p, Point a1, Point a2) {
return dcmp(Cross(a1 - p, a2 - p)) == ;
} int main() {
while(~scanf("%d", &n)) {
printf("INTERSECTING LINES OUTPUT\n");
while(n--) {
scanf("%lf%lf%lf%lf%lf%lf%lf%lf", &A.x, &A.y, &B.x, &B.y, &C.x, &C.y, &D.x, &D.y);
if(isIntersection(A - B, C - D)) {
if(OnLine(A, C, D)) {
printf("LINE\n");
} else {
printf("NONE\n");
}
} else {
Point P = GetLineIntersection(A, A - B, C, C - D);
printf("POINT %.2f %.2f\n", P.x, P.y);
}
}
printf("END OF OUTPUT\n");
}
}

Intersecting Lines (计算几何基础+判断两直线的位置关系)的更多相关文章

  1. TOYS(计算几何基础+点与直线的位置关系)

    题目链接:http://poj.org/problem?id=2318 题面: TOYS Time Limit: 2000MS   Memory Limit: 65536K Total Submiss ...

  2. Intersecting Lines---poj1269(求两直线的位置关系)

    题目链接:http://poj.org/problem?id=1269 题意:给你两条直线上的任意不同的两点,然后求两条直线的位置关系,如果相交于一点输出该点坐标; #include<iostr ...

  3. POJ P2318 TOYS与POJ P1269 Intersecting Lines——计算几何入门题两道

    rt,计算几何入门: TOYS Calculate the number of toys that land in each bin of a partitioned toy box. Mom and ...

  4. POJ 1269 Intersecting Lines(判断两直线位置关系)

    题目传送门:POJ 1269 Intersecting Lines Description We all know that a pair of distinct points on a plane ...

  5. poj 1269 判断直线的位置关系

    题目链接 题意 判断两条直线的位置关系,重合/平行/相交(求交点). 直线以其上两点的形式给出(点坐标为整点). 思路 写出直线的一般式方程(用\(gcd\)化为最简), 计算\(\begin{vma ...

  6. 判断两条直线的位置关系 POJ 1269 Intersecting Lines

    两条直线可能有三种关系:1.共线     2.平行(不包括共线)    3.相交. 那给定两条直线怎么判断他们的位置关系呢.还是用到向量的叉积 例题:POJ 1269 题意:这道题是给定四个点p1, ...

  7. POJ 1269 /// 判断两条直线的位置关系

    题目大意: t个测试用例 每次给出一对直线的两点 判断直线的相对关系 平行输出NODE 重合输出LINE 相交输出POINT和交点坐标 1.直线平行 两向量叉积为0 2.求两直线ab与cd交点 设直线 ...

  8. 【POJ 1269】判断两直线相交

    题 利用叉积解方程 #include <cstdio> #define MAX 1<<31 #define dd double int xmult(dd x1,dd y1,dd ...

  9. [置顶] 如何判断两个IP大小关系及是否在同一个网段中

    功能点  判断某个IP地址是否合法 判断两个IP地址是否在同一个网段中 判断两个IP地址的大小关系 知识准备 IP协议 子网掩码 Java 正则表达式 基本原理 IP地址范围 0.0.0.0- 255 ...

随机推荐

  1. iOS- <项目笔记> UIApplication常见属性与方法总结

    UIApplication 1.简介 1> 整个应用程序的象征,一个应用程序就一个UIApplication对象,使用了单例设计模式 2> 通过[UIApplication sharedA ...

  2. 【OSG】运行OSG示例出现的奶牛不完整问题

    发现一个很奇怪的问题:我用笔记本运行OSG里面的示例,出现的图案总是不完整显示的,以经典的奶牛图案为例,如图. 图一是我电脑上的情况,正常情况应该是图二.不知道这是什么原因,难道是我电脑显卡的原因吗? ...

  3. 无法打开mfc120.lib

    今天在用VS2013编译OSG的时候报错:无法打开mfc120.lib.仔细查了下资料. 我是这么解决的: 安装Multibyte MFC Library for Visual Studio 2013 ...

  4. python 爬虫 糗百成人

    import urllib from time import sleep import requests from lxml import etree try: def all_links(url,p ...

  5. Winform 数据绑定

    1.DataGridView数据绑定 namespace WindowsFormsApplication1 { public partial class Form1 : Form { private ...

  6. 设置启动窗体Program.cs文件

    using System; using System.Collections.Generic; using System.Linq; using System.Windows.Forms; names ...

  7. svn checkout不包括根目录

    在后面加 “.” 即可,如下: svn co svn://127.0.0.1/ylshop/ . 转载请注明博客出处:http://www.cnblogs.com/cjh-notes/

  8. 关联容器 // append方法

    关联容器和顺序容器的差别在于:关联容器通过键(key)存储和读取元素,而顺序容器则通过元素在容器中的位置顺序存储和访问元素. 1.关联容器支持通过键来高效地查找和读取元素.两个基本的关联容器类型是ma ...

  9. 使用getRequestDispatcher跳转后 能获取到request.setAttribute数据 分析

  10. 【bzoj1507】[NOI2003]Editor /【bzoj1269】[AHOI2006]文本编辑器editor Splay

    [bzoj1507][NOI2003]Editor 题目描述 输入 输入文件editor.in的第一行是指令条数t,以下是需要执行的t个操作.其中: 为了使输入文件便于阅读,Insert操作的字符串中 ...