对于普通的01背包问题,如果修改限制条件的大小,让数据范围比较大的话,比如相比较重量而言,价值的范围比较小,我们可以试着修改dp的对象,之前的dp针对不同的重量限制计算最大的价值。这次用dp针对不同的价值计算最小的重量。

定义dp[i+1][j],前i个物品中挑选出价值总和为j时总重量的最小值(不存在时就是一个充分大的数值INF)。由于前0个物品中什么都挑选不了,所以初值为:

dp[0][0]=0;

dp[0][j]=INF;

此外,前i个物品中挑选出价值总和为j时,一定有

前i-1个物品中挑选价值总和为j的部分

前i-1个物品中挑选价值总和为j-v[i]的部分,然后再选中第i个物品。

这两种方法之一,所以就能得到

dp[i+1][j]=min(dp[i][j],dp[i][j-v[i]]+w[i]);

这一递推式。最终的答案就对应于令dp[n][j]<=W的最大j。

则核心代码为:

int dp[MAX_N+1][MAX_N*MAX_V+1];///dp数组
void solve()
{
for(int i=0; i<=MAX_N*MAX_V; i++)
dp[0][i]=INF;
dp[0][0]=0;
for(int i=0; i<n; i++)
for(int j=0; j<=MAX_N*MAX_V; j++)
{
if(j<v[i])
dp[i+1][j]=dp[i][j];
else
dp[i+1][j]=min(dp[i][j],dp[i][j-v[i]]+w[i]); }
int ans=0;
for(int i=0; i<=MAX_N*MAX_V; i++)
if(dp[n][i]<+W) ans=i;
printf("%d\n",ans);
}

01背包问题的延伸即变形 (dp)的更多相关文章

  1. HDU 1864最大报销额 01背包问题

    B - 最大报销额 Time Limit:1000MS     Memory Limit:32768KB     64bit IO Format:%I64d & %I64u Submit St ...

  2. 01背包问题之2(dp)

    01背包问题之2 有n个物品,重量和价值分别为wi和vi,从这些物品中挑选出重量不超过W的物品,求所有挑选方案中物品价值总和的最大值 限制条件: 1 <= n <= 100; 1 < ...

  3. 普通01背包问题(dp)

    有n个物品,重量和价值分别为wi和vi,从这些物品中挑选出重量不超过W的物品,求所有挑选方案中物品价值总和的最大值 限制条件: 1 <= n <= 100; 1 <= wi,vi & ...

  4. 动态规划(DP),0-1背包问题

    题目链接:http://poj.org/problem?id=3624 1.p[i][j]表示,背包容量为j,从i,i+1,i+2,...,n的最优解. 2.递推公式 p[i][j]=max(p[i+ ...

  5. PAT 甲级 1068 Find More Coins (30 分) (dp,01背包问题记录最佳选择方案)***

    1068 Find More Coins (30 分)   Eva loves to collect coins from all over the universe, including some ...

  6. DP动态规划之01背包问题

    目录 问题描述 问题分析 问题求解 Java代码实现 优化方向一:时间方面:因为是j是整数是跳跃式的,可以选择性的填表. 思考二:处理j(背包容量),w(重量)不为整数的时候,因为j不为整数了,它就没 ...

  7. DP:0-1背包问题

    [问题描述] 0-1背包问题:有 N 个物品,物品 i 的重量为整数 wi >=0,价值为整数 vi >=0,背包所能承受的最大重量为整数 C.如果限定每种物品只能选择0个或1个,求可装的 ...

  8. 0-1背包问题-DP

    中文理解: 0-1背包问题:有一个贼在偷窃一家商店时,发现有n件物品,第i件物品价值vi元,重wi磅,此处vi与wi都是整数.他希望带走的东西越值钱越好,但他的背包中至多只能装下W磅的东西,W为一整数 ...

  9. 洛谷 P1064 金明的预算方案(01背包问题)

    传送门:Problem 1064 https://www.cnblogs.com/violet-acmer/p/9852294.html 题解: 这道题是 “01”背包问题的变形. 如果不考虑买附件必 ...

随机推荐

  1. Swift-重写(Override)

    子类可以为继承来的实例方法(instance method),类方法(class method),实例属性(instance property),或附属脚本(subscript)提供自己定制的实现(i ...

  2. iOS开发解决页面滑动返回跟scrollView左右划冲突

    -(BOOL)gestureRecognizer:(UIGestureRecognizer *)gestureRecognizer shouldRecognizeSimultaneouslyWithG ...

  3. 原生js 自定义confirm

    本文参考博客园另一篇文章:https://www.cnblogs.com/hzj680539/p/5374052.html,在此感谢. 在实际开发当中,考虑到原生js组件,包括alert.confir ...

  4. Jmeter系列-webdriver代码范例

    范例 WDS.sampleResult.sampleStart() try{ //打开博客首页 WDS.browser.get('http://xqtesting.blog.51cto.com') / ...

  5. ORA-00933 SQL命令未正确结束 INSERT INTO ... SELECT

    最近在修改数据库存储过程时,出现了一个ORA-00933错误, 执行的是 INSERT INTO...SELECT 语句,具体语句如下: INSERT INTO BASP_DX.QLR@GT(BDCD ...

  6. Jetty与Tomcat综合比较

    Jetty基本架构 Jetty目前的是一个比较被看好的 Servlet 引擎,它的架构比较简单,也是一个可扩展性和非常灵活的应用服务器.它有一个基本数据模型,这个数据模型就是 Handler(处理器) ...

  7. 第72天:jQuery实现下拉菜单

    jQuery实现下拉菜单 一.居中 1.块元素居中:给块元素本身设置:margin:0 auto;,块元素必须设置宽度 2.行内块元素居中:给元素父级设置text-algin:center; < ...

  8. hdu 2768 Cat vs. Dog (二分匹配)

    Cat vs. Dog Time Limit: 2000/1000 MS (Java/Others)    Memory Limit: 32768/32768 K (Java/Others)Total ...

  9. spring任务执行器与任务调度器(TaskExecutor And TaskScheduler)

    对于多线程及周期性调度相关的操作,spring框架提供了TaskExecutor和TaskScheduler接口为异步执行和任务调度.并提供了相关实现类给开发者使用.(只记录采用注解的使用形式,对于X ...

  10. POJ2724:Purifying Machine——题解

    http://poj.org/problem?id=2724 描述迈克是奶酪工厂的老板.他有2^N个奶酪,每个奶酪都有一个00 ... 0到11 ... 1的二进制数.为了防止他的奶酪免受病毒侵袭,他 ...