今天学LCA,先照一个模板学习代码,给一个离线算法,主要方法是并查集加上递归思想。

再搞,第一个离线算法是比较常用了,基本离线都用这种方法了,复杂度O(n+q)。通过递归思想和并查集来寻找最近公共祖先,自己模拟下过程就可以理解了。

然后就是在线算法,在线算法方法就很多了,比较常用的是LCA的RMQ转换,然后还有线段树,DP等,最后效率最高的就是倍增法了每次查询O(LogN)

这道题是离线的。

给出离线的Tarjan和倍增算法吧。

代码:

#include<iostream>
#include<cstdio>
#include<cstring>
#include<vector>
using namespace std;
#define MAXN 10001
int f[MAXN];
int r[MAXN];
int indegree[MAXN];
int vis[MAXN];
vector<int>hash[MAXN],Qes[MAXN];
int ancestor[MAXN];
void init(int n)
{
int i;
for(int i=1;i<=n;i++)
{
r[i]=1;
f[i]=1;
indegree[i]=0;
vis[i]=0;
ancestor[i]=0;
hash[i].clear();
Qes[i].clear();
}
}
int find(int n)
{
if(f[n]!=n)
f[n]=find(f[n]);
return f[n];
} int Union(int x,int y)
{
int a=find(x);
int b=find(y);
if(a==b)
return 0;
else if(r[a]<r[b])
{
f[a]=b;
r[b]+=r[a];
}
else
{
f[b]=a;
r[a]+=r[b];
}
return 1;
}
void LCA(int u)
{
ancestor[u]=u;
int size=hash[u].size();
for(int i=0;i<size;i++)
{
LCA(hash[u][i]);
Union(u,hash[u][i]);
ancestor[find(u)]=u;
}
vis[u]=1;
size=Qes[u].size();
for(int i=0;i<size;i++)
{
if(vis[Qes[u][i]]==1)
{
printf("%d\n",ancestor[find(Qes[u][i])]);
return ;
}
}
} int main()
{
int T,s,t,n;
scanf("%d",&T);
while(T--)
{
scanf("%d",&n);
init(n);
for(int i=1;i<=n-1;i++)
{ scanf("%d%d",&s,&t);
hash[s].push_back(t);
indegree[t]++;
}
scanf("%d%d",&s,&t);
Qes[s].push_back(t);
Qes[t].push_back(s);
for(int j=1;j<=n;j++)
{
if(indegree[j]==0)
{
LCA(j);
break;
}
}
}
return 0;
}

倍增法:

#include<iostream>
#include<cstring>
#include<cstdio>
#include<vector>
using namespace std;
const int N=10002;
const int Log=20;
int dp[N][Log],depth[N],deg[N];
struct Edge
{
int to;
Edge *next;
}edge[2*N],*cur,*head[N];
void addedge(int u,int v)
{
cur->to=v;
cur->next=head[u];
head[u]=cur++;
}
void dfs(int u)
{
depth[u]=depth[dp[u][0]]+1;
for(int i=1;i<Log;i++) dp[u][i]=dp[dp[u][i-1]][i-1];
for(Edge *it=head[u];it;it=it->next)
{
dfs(it->to);
}
}
int lca(int u,int v)
{
if(depth[u]<depth[v])swap(u,v);
for(int st=1<<(Log-1),i=Log-1;i>=0;i--,st>>=1)
{
if(st<=depth[u]-depth[v])
{
u=dp[u][i];
}
}
if(u==v) return u;
for(int i=Log-1;i>=0;i--)
{
if(dp[v][i]!=dp[u][i])
{
v=dp[v][i];
u=dp[u][i];
}
}
return dp[u][0];
}
void init(int n)
{
for(int i=0;i<=n;i++)
{
dp[i][0]=0;
head[i]=NULL;
deg[i]=0;
}
cur=edge;
}
int main()
{
int T;
scanf("%d",&T);
while(T--)
{
int n,u,v;
scanf("%d",&n);
init(n);
for(int i=0;i<n-1;i++)
{
scanf("%d%d",&u,&v);
addedge(u,v);
deg[v]++;
dp[v][0]=u;
}
for(int i=1;i<=n;i++)
{
if(deg[i]==0)
{
dfs(i);
break;
}
}
scanf("%d%d",&u,&v);
printf("%d\n",lca(u,v));
}
return 0;
}

poj 1330 LCA最近公共祖先的更多相关文章

  1. POJ 1330 LCA最近公共祖先 离线tarjan算法

    题意要求一棵树上,两个点的最近公共祖先 即LCA 现学了一下LCA-Tarjan算法,还挺好理解的,这是个离线的算法,先把询问存贮起来,在一遍dfs过程中,找到了对应的询问点,即可输出 原理用了并查集 ...

  2. poj 1330 【最近公共祖先问题+fa[]数组+ 节点层次搜索标记】

    题目地址:http://poj.org/problem?id=1330 Sample Input 2 16 1 14 8 5 10 16 5 9 4 6 8 4 4 10 1 13 6 15 10 1 ...

  3. lca 最近公共祖先

    http://poj.org/problem?id=1330 #include<cstdio> #include<cstring> #include<algorithm& ...

  4. LCA 近期公共祖先 小结

    LCA 近期公共祖先 小结 以poj 1330为例.对LCA的3种经常使用的算法进行介绍,分别为 1. 离线tarjan 2. 基于倍增法的LCA 3. 基于RMQ的LCA 1. 离线tarjan / ...

  5. Tarjan算法应用 (割点/桥/缩点/强连通分量/双连通分量/LCA(最近公共祖先)问题)(转载)

    Tarjan算法应用 (割点/桥/缩点/强连通分量/双连通分量/LCA(最近公共祖先)问题)(转载) 转载自:http://hi.baidu.com/lydrainbowcat/blog/item/2 ...

  6. LCA(最近公共祖先)模板

    Tarjan版本 /* gyt Live up to every day */ #pragma comment(linker,"/STACK:1024000000,1024000000&qu ...

  7. CodeVs.1036 商务旅行 ( LCA 最近公共祖先 )

    CodeVs.1036 商务旅行 ( LCA 最近公共祖先 ) 题意分析 某首都城市的商人要经常到各城镇去做生意,他们按自己的路线去做,目的是为了更好的节约时间. 假设有N个城镇,首都编号为1,商人从 ...

  8. LCA近期公共祖先

    LCA近期公共祖先 该分析转之:http://kmplayer.iteye.com/blog/604518 1,并查集+dfs 对整个树进行深度优先遍历.并在遍历的过程中不断地把一些眼下可能查询到的而 ...

  9. LCA 最近公共祖先 tarjan离线 总结 结合3个例题

    在网上找了一些对tarjan算法解释较好的文章 并加入了自己的理解 LCA(Least Common Ancestor),顾名思义,是指在一棵树中,距离两个点最近的两者的公共节点.也就是说,在两个点通 ...

随机推荐

  1. python扫描proxy并获取可用代理ip

    今天咱写一个挺实用的工具,就是扫描并获取可用的proxy 首先呢,我先百度找了一个网站:http://www.xicidaili.com 作为例子 这个网站里公布了许多的国内外可用的代理的ip和端口 ...

  2. 刚装的系统C盘占空间特别大怎么办?关闭win7的系统还原和调整虚拟内存

    刚装的win7系统,C盘占空间特别大,清理垃圾,清理碎片之后还是特别大,检查一下,系统才20G,C盘却占用了40G,其实是没有关闭系统还原,再就是没有调整虚拟内存.win7旗舰版(其他版本也可能这样, ...

  3. NOIP 2001 提高组 题解

    NOIP 2001 提高组 题解 No 1. 一元三次方程求解 https://vijos.org/p/1116 看见有人认真推导了求解公式,然后猥琐暴力过的同学们在一边偷笑~~~ 数据小 暴力枚举即 ...

  4. swift UITextField光标聚焦以及光标颜色修改

    光标聚焦闪烁: nick_textField.becomeFirstResponder() 光标颜色修改 nick_textField.tintColor = UIColor.red 备份:http: ...

  5. NYOJ--45--棋盘覆盖(大数)

    棋盘覆盖 时间限制:3000 ms  |  内存限制:65535 KB 难度:3   描述 在一个2k×2k(1<=k<=100)的棋盘中恰有一方格被覆盖,如图1(k=2时),现用一缺角的 ...

  6. linux文件系统目录解析

    Linux下的文件系统为树形结构,入口为/ 树形结构下的文件目录: 无论哪个版本的Linux系统,都有这些目录,这些目录应该是标准的.各个Linux发行版本会存在一些小小的差异,但总体来说,还是大体差 ...

  7. 嵌入式linux网络配置

    在开发阶段需要用tftp等开发工具,这时就要配置Linux网络,首先确保windows网络IP地址为固定IP, 1.假设windows IP地址为19.168.2.10子网掩码:255.255.255 ...

  8. golang 的 http cookie 用法

    golang的http cookie用法 在服务端程序开发的过程中,cookie经常被用于验证用户登录.golang 的 net/http 包中自带 http cookie的定义,下面就来讲一下coo ...

  9. python_求相邻数

    什么是相邻数? 比如5,相邻数为4和6,和5相差1的数,连续相差为1的一组数 需求: 遍历inputList 所有数字,取出所有数字,判断是否有相邻数, 不相邻数字 和 相邻数字 都以 “数组”形式 ...

  10. Hibernate(四)

    Hibernate的二级缓存 理解缓存定义: 缓存(Cache):计算机领域非常通用的概念.它介于应用程序和永久性数据存储源(如硬盘上的文件或者数据库)之间,其作用是降低应用程序直接读写永久性数据存储 ...