今天学LCA,先照一个模板学习代码,给一个离线算法,主要方法是并查集加上递归思想。

再搞,第一个离线算法是比较常用了,基本离线都用这种方法了,复杂度O(n+q)。通过递归思想和并查集来寻找最近公共祖先,自己模拟下过程就可以理解了。

然后就是在线算法,在线算法方法就很多了,比较常用的是LCA的RMQ转换,然后还有线段树,DP等,最后效率最高的就是倍增法了每次查询O(LogN)

这道题是离线的。

给出离线的Tarjan和倍增算法吧。

代码:

#include<iostream>
#include<cstdio>
#include<cstring>
#include<vector>
using namespace std;
#define MAXN 10001
int f[MAXN];
int r[MAXN];
int indegree[MAXN];
int vis[MAXN];
vector<int>hash[MAXN],Qes[MAXN];
int ancestor[MAXN];
void init(int n)
{
int i;
for(int i=1;i<=n;i++)
{
r[i]=1;
f[i]=1;
indegree[i]=0;
vis[i]=0;
ancestor[i]=0;
hash[i].clear();
Qes[i].clear();
}
}
int find(int n)
{
if(f[n]!=n)
f[n]=find(f[n]);
return f[n];
} int Union(int x,int y)
{
int a=find(x);
int b=find(y);
if(a==b)
return 0;
else if(r[a]<r[b])
{
f[a]=b;
r[b]+=r[a];
}
else
{
f[b]=a;
r[a]+=r[b];
}
return 1;
}
void LCA(int u)
{
ancestor[u]=u;
int size=hash[u].size();
for(int i=0;i<size;i++)
{
LCA(hash[u][i]);
Union(u,hash[u][i]);
ancestor[find(u)]=u;
}
vis[u]=1;
size=Qes[u].size();
for(int i=0;i<size;i++)
{
if(vis[Qes[u][i]]==1)
{
printf("%d\n",ancestor[find(Qes[u][i])]);
return ;
}
}
} int main()
{
int T,s,t,n;
scanf("%d",&T);
while(T--)
{
scanf("%d",&n);
init(n);
for(int i=1;i<=n-1;i++)
{ scanf("%d%d",&s,&t);
hash[s].push_back(t);
indegree[t]++;
}
scanf("%d%d",&s,&t);
Qes[s].push_back(t);
Qes[t].push_back(s);
for(int j=1;j<=n;j++)
{
if(indegree[j]==0)
{
LCA(j);
break;
}
}
}
return 0;
}

倍增法:

#include<iostream>
#include<cstring>
#include<cstdio>
#include<vector>
using namespace std;
const int N=10002;
const int Log=20;
int dp[N][Log],depth[N],deg[N];
struct Edge
{
int to;
Edge *next;
}edge[2*N],*cur,*head[N];
void addedge(int u,int v)
{
cur->to=v;
cur->next=head[u];
head[u]=cur++;
}
void dfs(int u)
{
depth[u]=depth[dp[u][0]]+1;
for(int i=1;i<Log;i++) dp[u][i]=dp[dp[u][i-1]][i-1];
for(Edge *it=head[u];it;it=it->next)
{
dfs(it->to);
}
}
int lca(int u,int v)
{
if(depth[u]<depth[v])swap(u,v);
for(int st=1<<(Log-1),i=Log-1;i>=0;i--,st>>=1)
{
if(st<=depth[u]-depth[v])
{
u=dp[u][i];
}
}
if(u==v) return u;
for(int i=Log-1;i>=0;i--)
{
if(dp[v][i]!=dp[u][i])
{
v=dp[v][i];
u=dp[u][i];
}
}
return dp[u][0];
}
void init(int n)
{
for(int i=0;i<=n;i++)
{
dp[i][0]=0;
head[i]=NULL;
deg[i]=0;
}
cur=edge;
}
int main()
{
int T;
scanf("%d",&T);
while(T--)
{
int n,u,v;
scanf("%d",&n);
init(n);
for(int i=0;i<n-1;i++)
{
scanf("%d%d",&u,&v);
addedge(u,v);
deg[v]++;
dp[v][0]=u;
}
for(int i=1;i<=n;i++)
{
if(deg[i]==0)
{
dfs(i);
break;
}
}
scanf("%d%d",&u,&v);
printf("%d\n",lca(u,v));
}
return 0;
}

poj 1330 LCA最近公共祖先的更多相关文章

  1. POJ 1330 LCA最近公共祖先 离线tarjan算法

    题意要求一棵树上,两个点的最近公共祖先 即LCA 现学了一下LCA-Tarjan算法,还挺好理解的,这是个离线的算法,先把询问存贮起来,在一遍dfs过程中,找到了对应的询问点,即可输出 原理用了并查集 ...

  2. poj 1330 【最近公共祖先问题+fa[]数组+ 节点层次搜索标记】

    题目地址:http://poj.org/problem?id=1330 Sample Input 2 16 1 14 8 5 10 16 5 9 4 6 8 4 4 10 1 13 6 15 10 1 ...

  3. lca 最近公共祖先

    http://poj.org/problem?id=1330 #include<cstdio> #include<cstring> #include<algorithm& ...

  4. LCA 近期公共祖先 小结

    LCA 近期公共祖先 小结 以poj 1330为例.对LCA的3种经常使用的算法进行介绍,分别为 1. 离线tarjan 2. 基于倍增法的LCA 3. 基于RMQ的LCA 1. 离线tarjan / ...

  5. Tarjan算法应用 (割点/桥/缩点/强连通分量/双连通分量/LCA(最近公共祖先)问题)(转载)

    Tarjan算法应用 (割点/桥/缩点/强连通分量/双连通分量/LCA(最近公共祖先)问题)(转载) 转载自:http://hi.baidu.com/lydrainbowcat/blog/item/2 ...

  6. LCA(最近公共祖先)模板

    Tarjan版本 /* gyt Live up to every day */ #pragma comment(linker,"/STACK:1024000000,1024000000&qu ...

  7. CodeVs.1036 商务旅行 ( LCA 最近公共祖先 )

    CodeVs.1036 商务旅行 ( LCA 最近公共祖先 ) 题意分析 某首都城市的商人要经常到各城镇去做生意,他们按自己的路线去做,目的是为了更好的节约时间. 假设有N个城镇,首都编号为1,商人从 ...

  8. LCA近期公共祖先

    LCA近期公共祖先 该分析转之:http://kmplayer.iteye.com/blog/604518 1,并查集+dfs 对整个树进行深度优先遍历.并在遍历的过程中不断地把一些眼下可能查询到的而 ...

  9. LCA 最近公共祖先 tarjan离线 总结 结合3个例题

    在网上找了一些对tarjan算法解释较好的文章 并加入了自己的理解 LCA(Least Common Ancestor),顾名思义,是指在一棵树中,距离两个点最近的两者的公共节点.也就是说,在两个点通 ...

随机推荐

  1. C++ STL vector详解

    一.解释:  vector(向量):是一种顺序容器,事实上和数组差不多,但它比数组更优越.一般来说数组不能动态拓展,因此在程序运行的时候不是浪费内存,就是造成越界.而vector正好弥补了这个缺陷,它 ...

  2. 染色[SDOI2011]

    题目描述 给定一棵有n个节点的无根树和m个操作,操作有2类: 1.将节点a到节点b路径上所有点都染成颜色c: 2.询问节点a到节点b路径上的颜色段数量(连续相同颜色被认为是同一段),如"11 ...

  3. Java编写的日历,输入年月,输出这个月的日期与星期

    import java.util.Scanner; public class rili { public static void main(String[] args) { for (int g = ...

  4. Rabin-Karp【转载】

    问题描述: Rabin-Karp的预处理时间是O(m),匹配时间O( ( n - m + 1 ) m )既然与朴素算法的匹配时间一样,而且还多了一些预处理时间,那为什么我们还要学习这个算法呢?虽然Ra ...

  5. C#上位机串口控制12864显示

    实现的效果 上面是用Proteus仿真的,,对了如果自己想用proteus仿真需要安装下面这个软件 再看一下实物显示效果 先做上位机部分........... 为了程序一启动就把电脑上能用的串口号显示 ...

  6. Luogu P2690 接苹果

    题目背景 USACO 题目描述 很少有人知道奶牛爱吃苹果.农夫约翰的农场上有两棵苹果树(编号为1和2), 每一棵树上都长满了苹果.奶牛贝茜无法摘下树上的苹果,所以她只能等待苹果 从树上落下.但是,由于 ...

  7. SQL SERVER 2008 下载地址&安装方法

    下载地址:http://sqlserver.dlservice.microsoft.com/dl/download/B/8/0/B808AF59-7619-4A71-A447-F597DE74AC44 ...

  8. mysql 报错 session halted的解决办法,实际工作中的结论。

    写后台程序,发现执行到sql语句时就报错session halted,如下图: 也上网搜过蛮多方法,都不能解决我的问题.后来自己发现了症结所在,其实很简单:执行insert的语句没有包含not nul ...

  9. ORA-00119/ORA-00132

    今天在启动服务器上的ORACLE时遇到如下错误: SQL> startup; ORA-00119: invalid specification for system parameter LOCA ...

  10. 移动端为何不使用click而模拟tap事件及解决方案

    移动端click会遇到2个问题,click会有200-300ms的延迟,同时click事件的延迟响应,会出现穿透,即点击会触发非当前层的点击事件. 为什么会存在延迟? Google开发者文档中有提到: ...