正解:线性规划。

直接套单纯形的板子,因为所约束条件都是>=号,且目标函数为最小值,所以考虑对偶转换,转置一下原矩阵就好了。

 //It is made by wfj_2048~
#include <algorithm>
#include <iostream>
#include <complex>
#include <cstring>
#include <cstdlib>
#include <cstdio>
#include <vector>
#include <cmath>
#include <queue>
#include <stack>
#include <map>
#include <set>
#define inf (1e15)
#define eps (1e-12)
#define il inline
#define RG register
#define ll long long using namespace std; double a[][];
int b[],n,m; il int gi(){
RG int x=,q=; RG char ch=getchar(); while ((ch<'' || ch>'') && ch!='-') ch=getchar();
if (ch=='-') q=-,ch=getchar(); while (ch>='' && ch<='') x=x*+ch-,ch=getchar(); return q*x;
} il void pivot(RG int l,RG int e){
RG double k=a[l][e]; a[l][e]=;
for (RG int i=;i<=n;++i) a[l][i]/=k; RG int len=;
for (RG int i=;i<=n;++i) if (fabs(a[l][i])>eps) b[++len]=i;
for (RG int i=;i<=m;++i)
if (i!=l && fabs(a[i][e])>eps){
k=a[i][e],a[i][e]=;
for (RG int j=;j<=len;++j) a[i][b[j]]-=k*a[l][b[j]];
}
return;
} il double simplex(){
while (){
RG int l,e; for (e=;e<=n;++e) if (a[][e]>eps) break;
if (e==n+) return -a[][]; RG double tmp=inf;
for (RG int i=;i<=m;++i)
if (a[i][e]>eps && tmp>a[i][]/a[i][e]) tmp=a[i][]/a[i][e],l=i;
if (tmp==inf) return inf; pivot(l,e);
}
} il void work(){
m=gi(),n=gi(); RG int l,r,d;
for (RG int i=;i<=m;++i) a[i][]=gi();
for (RG int i=;i<=n;++i){
l=gi(),r=gi(),d=gi(); a[][i]=d;
for (RG int j=l;j<=r;++j) a[j][i]=;
}
printf("%lld\n",(ll)(simplex()+0.5)); return;
} int main(){
work();
return ;
}

bzoj3112 [Zjoi2013]防守战线的更多相关文章

  1. BZOJ3112 [Zjoi2013]防守战线 【单纯形】

    题目链接 BZOJ3112 题解 同志愿者招募 费用流神题 单纯形裸题 \(BZOJ\)可过 洛谷被卡.. #include<algorithm> #include<iostream ...

  2. 单纯形 BZOJ3112: [Zjoi2013]防守战线

    题面自己上网查. 学了一下单纯形.当然 证明什么的 显然是没去学.不然估计就要残废了 上学期已经了解了 什么叫标准型. 听起来高大上 其实没什么 就是加入好多松弛变量+各种*(-1),使得最后成为一般 ...

  3. bzoj3550: [ONTAK2010]Vacation&&bzoj3112: [Zjoi2013]防守战线

    学了下单纯形法解线性规划 看起来好像并不是特别难,第二个code有注释.我还有...*=-....这个不是特别懂 第一个是正常的,第二个是解对偶问题的 #include<cstdio> # ...

  4. 【BZOJ3112】[Zjoi2013]防守战线 单纯形法

    [BZOJ3112][Zjoi2013]防守战线 题解:依旧是转化成对偶问题,然后敲板子就行了~ 建完表后发现跟志愿者招募的表正好是相反的,感觉很神奇~ #include <cstdio> ...

  5. BZOJ 3112: [Zjoi2013]防守战线 [单纯形法]

    题目描述 战线可以看作一个长度为n 的序列,现在需要在这个序列上建塔来防守敌兵,在序列第i 号位置上建一座塔有Ci 的花费,且一个位置可以建任意多的塔,费用累加计算.有m 个区间[L1, R1], [ ...

  6. ZJOI2013 防守战线

    题目 战线可以看作一个长度为\(n\)的序列,现在需要在这个序列上建塔来防守敌兵,在序列第\(i\)号位置上建一座塔有\(C_i\)的花费,且一个位置可以建任意多的塔,费用累加计算.有\(m\)个区间 ...

  7. 数学(线性规划): ZJOI2013 防守战线

    偷懒用的线性规划. #include <iostream> #include <cstring> #include <cstdio> using namespace ...

  8. BZOJ 3112 Zjoi2013 防守战线 单纯形

    题目大意: 单纯形*2.. . #include <cmath> #include <cstdio> #include <cstring> #include < ...

  9. BZOJ 3112 [Zjoi2013]防守战线 线性规划

    题意: 简单叙述: 一个长度为n的序列,在每一个点建塔的费用为Ci.有m个区间.每一个区间内至少有Dj个塔.求最小花费. 方法:线性规划 解析: 与上一题相似.相同使用对偶原理解题.解法不再赘述. 代 ...

随机推荐

  1. oracle 11g centos6 安装

    选型:32位的内存是个瓶颈,已经是64位的时代了.使用64位的CentOS6 和 64位的Oracle 11g R2在虚拟机器安装,采用hostonly方式设置网络注意:能上网的网卡要设置一下ICS( ...

  2. java开发中获取路径的一些方式

    1.servlet开发获取WebContent(项目)的绝对路径: System.out.println(getServletContext().getRealPath("")); ...

  3. 解决VIM编辑器中文乱码

    追加如下内容到/etc/vimr (或者不同的用户家目录下的.vimrc文件中) set encoding=utf8filetype plugin indent onsyntax on" s ...

  4. C++—动态内存管理之深入探究new和delete

    C++中程序存储空间除栈空间和静态区外,每个程序还拥有一个内存池,这部分内存被称为自由空间(free store)或堆(heap).程序用堆来存储动态分配的对象,即,那些程序运行时分配的对象.动态对象 ...

  5. SBT使用阿里云Maven仓库,解决SBT下载依赖慢。

    添加:~/.sbt/repositories 文件 文件内容: [repositories] local my-maven-repo: http://maven.aliyun.com/nexus/co ...

  6. Oracle子查询中any、some、all之间的区别

    用some,any和all对子查询中返回的多行结果进行处理. 下面我们来简单介一下这几个关键词的含义. * Some在此表示满足其中一个的意义,是用or串起来的比较从句. * Any也表示满足其中一个 ...

  7. VB中的GDI编程-2 画笔

    p{ font-size: 15px; } .alexrootdiv>div{ background: #eeeeee; border: 1px solid #aaa; width: 99%; ...

  8. 老李推荐:第5章5节《MonkeyRunner源码剖析》Monkey原理分析-启动运行: 获取系统服务引用

    老李推荐:第5章5节<MonkeyRunner源码剖析>Monkey原理分析-启动运行: 获取系统服务引用   上一节我们描述了monkey的命令处理入口函数run是如何调用optionP ...

  9. Java中利用BigInteger类进行大数开方

    在Java中有时会用到大数据,基本数据类型的存储范围已经不能满足要求了,如要对10的1000次方的这样一个数据规模的数进行开方运算,很明显不能直接用Math.sqrt()来进行计算,因为已经溢出了. ...

  10. vertical-align 与 line-height 傻傻分不清??

    要说吧,咱家是个菜鸟,以前遇见垂直居中的东东,也是现查现用,其中最长遇到的东西就是 vertical-align 和 line-height,似乎这俩个兄弟都可以实现居中对齐,不过窃以为二者还是有区别 ...