[算法]找到无序数组中最小的K个数
题目:
给定一个无序的整型数组arr,找到其中最小的k个数。
方法一:
将数组排序,排序后的数组的前k个数就是最小的k个数。
时间复杂度:O(nlogn)
方法二:
时间复杂度:O(nlogk)
维护一个有k个数的大根堆,这个堆代表目前选出的k个最小的数。在堆的k个元素中堆顶元素是最小的k个数中最大的那个。
接下来要遍历整个数组,遍历的过程中看当前数是否比堆顶元素小。如果是,就把堆顶元素替换成当前数,然后调整堆。如果不是,则不做任何操作,继续遍历下一个数。在遍历完成后,堆中的k个数就是所有数组中最小的k个数。
程序:
public static int[] getMinKNumsByHeap(int[] arr, int k) {
if (k < 1 || k > arr.length) {
return arr;
}
int[] heap = new int[k];
for (int i = 0; i != k; i++) {
heapInsert(heap, arr[i], i);
}
for (int i = k; i < arr.length; i++) {
if (arr[i] < heap[0]) {
heap[0] = arr[i];
heapify(heap, 0, k);
}
}
return heap;
}
private static void heapInsert(int[] heap, int value, int index) {
heap[index] = value;
while (index != 0) {
int parent = (index - 1) / 2;
if (heap[parent] < heap[index]) {
swap(heap, parent, index);
index = parent;
} else {
break;
}
}
}
private static void heapify(int[] heap, int index, int heapSize) {
int left = index * 2 + 1;
int right = index * 2 + 2;
int largest = index;
while (left < heapSize) {
if (heap[left] > heap[index]) {
largest = left;
}
if (right < heapSize && heap[right] > heap[largest]) {
largest = right;
}
if (largest != index) {
swap(heap, largest, index);
} else {
break;
}
index = largest;
left = index * 2 + 1;
right = index * 2 + 2;
}
}
private static void swap(int[] heap, int parent, int index) {
int tmp = heap[index];
heap[index] = heap[parent];
heap[parent] = tmp;
}
方法三:
时间复杂度:O(n)
这里用到了一个经典算法----BFPRT算法。
1973 年, Blum 、 Floyd 、 Pratt 、 Rivest 、 Tarjan 集体出动,合写了一篇题为 “Time bounds for selection” 的论文,给出了一种在数组中选出第 k 大元素的算法,俗称"中位数之中位数算法"。依靠一种精心设计的 pivot 选取方法,该算法从理论上保证了最坏情形下的线性时间复杂度,打败了平均线性、最坏 O(n^2) 复杂度的传统算法。一群大牛把递归算法的复杂度分析玩弄于股掌之间,构造出了一个当之无愧的来自圣经的算法。
算法步骤:
step1:将n个元素每5个一组,分成n/5(上界)组,最后的一个组的元素个数为n%5,有效的组数为n/5。
step2:取出每一组的中位数,最后一个组的不用计算中位数,任意排序方法,这里的数据比较少只有5个,
可以用简单的冒泡排序或是插入排序。
setp3 : 将各组的中位数与数组开头的数据在组的顺序依次交换,这样各个组的中位数都排在了数据的左边。
递归的调用中位数选择算法查找上一步中所有组的中位数的中位数,设为x,偶数个中位数的情况下设定为选取中间小的一个。
setp4: 按照x划分,大于或者等于x的在右边,小于x的在左边,关于setp4数据的划分,中位数放在左边或是右边会有些影响。
后面的代码调试将会看到。
step5:setp4中划分后数据后返回一个下表i,i左边的元素均是小于x,i右边的元素包括i都是大于或是等于x的。
若i==k,返回x;
若i<k,在小于x的元素中递归查找第i小的元素;
若i>k,在大于等于x的元素中递归查找第i-k小的元素。
public static int[] getMinKNumsByBFPRT(int[] arr, int k) {
if (k < 1 || k > arr.length) {
return arr;
}
int minKth = getMinKthByBFPRT(arr, k);
int[] res = new int[k];
int index = 0;
for (int i = 0; i != arr.length; i++) {
if (arr[i] < minKth) {
res[index++] = arr[i];
}
}
for (; index != res.length; index++) {
res[index] = minKth;
}
return res;
}
public static int getMinKthByBFPRT(int[] arr, int K) {
int[] copyArr = copyArray(arr);
return select(copyArr, 0, copyArr.length - 1, K - 1);
}
public static int[] copyArray(int[] arr) {
int[] res = new int[arr.length];
for (int i = 0; i != res.length; i++) {
res[i] = arr[i];
}
return res;
}
public static int select(int[] arr, int begin, int end, int i) {
if (begin == end) {
return arr[begin];
}
int pivot = medianOfMedians(arr, begin, end);
int[] pivotRange = partition(arr, begin, end, pivot);
if (i >= pivotRange[0] && i <= pivotRange[1]) {
return arr[i];
} else if (i < pivotRange[0]) {
return select(arr, begin, pivotRange[0] - 1, i);
} else {
return select(arr, pivotRange[1] + 1, end, i);
}
}
public static int medianOfMedians(int[] arr, int begin, int end) {
int num = end - begin + 1;
int offset = num % 5 == 0 ? 0 : 1;
int[] mArr = new int[num / 5 + offset];
for (int i = 0; i < mArr.length; i++) {
int beginI = begin + i * 5;
int endI = beginI + 4;
mArr[i] = getMedian(arr, beginI, Math.min(end, endI));
}
return select(mArr, 0, mArr.length - 1, mArr.length / 2);
}
public static int[] partition(int[] arr, int begin, int end, int pivotValue) {
int small = begin - 1;
int cur = begin;
int big = end + 1;
while (cur != big) {
if (arr[cur] < pivotValue) {
swap(arr, ++small, cur++);
} else if (arr[cur] > pivotValue) {
swap(arr, cur, --big);
} else {
cur++;
}
}
int[] range = new int[2];
range[0] = small + 1;
range[1] = big - 1;
return range;
}
public static int getMedian(int[] arr, int begin, int end) {
insertionSort(arr, begin, end);
int sum = end + begin;
int mid = (sum / 2) + (sum % 2);
return arr[mid];
}
public static void insertionSort(int[] arr, int begin, int end) {
for (int i = begin + 1; i != end + 1; i++) {
for (int j = i; j != begin; j--) {
if (arr[j - 1] > arr[j]) {
swap(arr, j - 1, j);
} else {
break;
}
}
}
}
[算法]找到无序数组中最小的K个数的更多相关文章
- 【算法】数组与矩阵问题——找到无序数组中最小的k个数
/** * 找到无序数组中最小的k个数 时间复杂度O(Nlogk) * 过程: * 1.一直维护一个有k个数的大根堆,这个堆代表目前选出来的k个最小的数 * 在堆里的k个元素中堆顶的元素是最小的k个数 ...
- 《程序员代码面试指南》第八章 数组和矩阵问题 找到无序数组中最小的k 个数
题目 找到无序数组中最小的k 个数 java代码 package com.lizhouwei.chapter8; /** * @Description: 找到无序数组中最小的k 个数 * @Autho ...
- [程序员代码面试指南]数组和矩阵问题-找到无序数组中最小的k个数(堆排序)
题目链接 https://www.nowcoder.com/practice/6a296eb82cf844ca8539b57c23e6e9bf?tpId=13&tqId=11182&t ...
- 小米笔试题:无序数组中最小的k个数
题目描述 链接:https://www.nowcoder.com/questionTerminal/ec2575fb877d41c9a33d9bab2694ba47?source=relative 来 ...
- 求一个数组中最小的K个数
方法1:先对数组进行排序,然后遍历前K个数,此时时间复杂度为O(nlgn); 方法2:维护一个容量为K的最大堆(<算法导论>第6章),然后从第K+1个元素开始遍历,和堆中的最大元素比较,如 ...
- 窥探算法之美妙——寻找数组中最小的K个数&python中巧用最大堆
原文发表在我的博客主页,转载请注明出处 前言 不论是小算法或者大系统,堆一直是某种场景下程序员比较亲睐的数据结构,而在python中,由于数据结构的极其灵活性,list,tuple, dict在很多情 ...
- 找到数组中最小的k个数
/*输入整数数组 arr ,找出其中最小的 k 个数.例如,输入4.5.1.6.2.7.3.8这8个数字, 则最小的4个数字是1.2.3.4. 示例 1: 输入:arr = [3,2,1], k = ...
- 求数组中最小的k个数
题目:输入n个整数,找出其中最小的K个数.例如输入4,5,1,6,2,7,3,8这8个数字,则最小的4个数字是1,2,3,4,. package test; import java.util.Arra ...
- [剑指offer]数组中最小的K个数,C++实现
原创博文,转载请注明出处! http://github.com/wanglei5205 http://cnblogs.com/wanglei5205 # 题目 输入n个整数,找出其中最小的K个数.例如 ...
随机推荐
- .NET CORE 2.0小白笔记(五):配置的热更新、配置的框架设计
配置的热更新 什么是热更新:一般来说,我们创建的项目都无法做到热更新:即项目无需重启,修改配置文件后读取到的信息就是修改配置之后的 我们只需要吧项目中用到的IOptions改成IOptionsSnap ...
- Python中运算符与while初识
一.运算符 1.算术运算: 2.比较运算: 3.赋值运算: 4.位运算: 注: ~ 举例: ~5 = -6 解释: 将二进制数+1之后乘以-1,即~x = -(x+1),-(101 + 1) = ...
- java多线程之happens-before
1.背景问题 在讲happens-before之前,先引入一个例子: 假定我们有已经被初始化的变量: int counter = 0; 这个 counter 变量被两个线程所共有,也就是说线程A和线程 ...
- PlSql加入数据库链接
Oracle-OraDb10g_home2 -> 配置和移植工具 -> net Manager -> 本地 -> 服务命名 -> 加入(网络服务名自己命名,主机名:要 ...
- 【Selenium + Python】之 Excel、CSV、XML文件读取数据并运用数据百度查询
目录 从Excel读取数据进行百度搜索 从CSV读取数据进行百度搜索 从XML读取数据进行登录操作 附:其他学习资料(<xml.etree.ElementTree模块>.<pytho ...
- 【JMeter4.0学习(十)】之JMeter函数简单运用以及结合正则表达式提取器
下面来简单的举个栗子: 首先,把函数和正则表达式提取器放在一块来介绍,如下所示: 1.结构完整展示,下面再一步一步创建添加: 2.添加线程组: 3.首先添加HTTP请求1 4.添加结果树后,运行后查看 ...
- Spring IOC(通过实例介绍,属性与构造方法注入)
概括说明:下面通过实例介绍下属性方法注入.构造方法注入 1.源码结构图 2.代码介绍 (1).Dao接口 :UserDAO (2).Dao接口实现:UserDAOImpl (3).实体类:User ( ...
- 使用Socket通信实现FTP客户端程序
FTP 客户端如 FlashFXP,File Zilla 被广泛应用,原理上都是用底层的 Socket 来实现.FTP 客户端与服务器端进行数据交换必须建立两个套接字,一个作为命令通道,一个作为数据通 ...
- jquery获取页面iframe内容
//取得整个HTML格式 var f = $(window.frames["ReportIFrame"].document).contents().html(); 或者 $(&qu ...
- web 文件下载
response.reset(); response.setContentType("octets/stream"); response.addHeader("Conte ...