首先回顾了几个Linear Model的共性:都是算出来一个score,然后做某种变化处理。

既然Linear Model有各种好处(训练时间,公式简单),那如何把Linear Regression给应用到Classification的问题上呢?到底能不能迁移呢?

总结了如下的集中Linear Model的error functions的表达式:

这里都提炼出来了ys这一项,y表示需要更正的方向{+1,-1},s表示需要更正的幅度(score)

三种error function可以这么理解:

(1)0/1 error : 幅度s固定,y表示方向

(2)square error : y很正或很负,error都非常大(注意这里只需要y很大或很下,error就收不住了);只有当ys很接近1的时候,error才可能接近0

(3)cross-entropy error : 如果ys很负的话,那么error就无穷大;如果ys很正的话,那么error无限接近0

再画出几种model的error function,可以看到:

(1)square error是不太合适的,ys>>1的时候,error衡量的过了,不合适。

(2)cross-entropy error也不太合适,因为在0到-1之间位于0/1 error下面了

如果想合适的话,可以对cross-entropy进行放缩:把ln换成log2,就OK了。

这里有个Point值得关注,为啥要放缩呢?错误率低不是更好么?

其实这跟目的有关:

(1)首先我们的目的是要用regression来代替classification(为啥要替代?因为PLA/Pocket是NP-hard的问题,不好整;而Linear Model在最优化之后,求解比较容易了),如果regression和classification在性能上差不多,那就可以替代了。

(2)因此,我们把cross-entropy error来scale成0/1 error的upper bound,目的就是让cross-entropy error低的时候,0/1error也低,放缩一下是为了说bound住这个事情。

再简单些就是说,如果实际中linear model用regression给出来的方法分类效果好,那么PLA/Pocket分类效果也好。

接下来对比了PLA、Linear Regression 和 Logistic Regression的方法优缺点:

(1)PLA:线性可分时候很犀利;如果不可分,那就只好Pocket

(2)Linear Regression:最优化可以求出来analytics close solution;但是当|ys|很大的时候,positive direction和negative direction的bound都太松太松了

(3)Logistic Regression:gradient descent可以求解;但是negatvie direction方向bound比较松

总结一些实际经验:linear regression可以作为PLA/Pocket/Logistic Regression的初始值设置。

接下来讲了一种Stochastic Gradient Descent的方法:

(1)原来是所有点在算梯度,然后取平均,再更新w;随机梯度下降,是不用每次算所有点了,每次算一个点,用这个点代替所有点的平均。

(2)敢这么做的原因:是因为 stochastic gradient = true gradient + zero-mean 'noise' directions;因为是zero-mean的noise,所以可以得到average true gradient ≈ average stochastic gradient

(3)SGD方法在logistic regression的应用公式,非常像PLA的公式

(4)从实际情况出发,一般迭代次数达到一定,可以认为SGD已经获得了最佳的结果;ita在实际经验中,一般取值为0.1左右合适。

随后,由binary classification问题延伸到了multiclass的问题,总体来说有两种方法:

1. One-Versus-ALL (OVA) Decomposition

意思就是

(1)每次把一个class和非这个class的当成目标两类,用logistic regression分这两类

(2)分类时输入某个点,然后看这个点上取哪一类的概率最大

这里有一点点儿问题:(2)点中不一定所有类别的概率和是1,虽然实际中影响不大,但是统计学的还是有严谨的方法(multinomial logistic regression)

当类别很多的时候(比如,K=100)那么,每次用logistic regression的时候,正样本和负样本的差别非常大,这样不容易得出正确结果。

为了解决OVA的unbalance问题:每次只取两个类,一共有K类,做C(K,2)次logistic regression就OK了;当给一个输入点的时候,用这C(K,2)个分类器给所有K个类别投票,取票数大的作为输出结果。

这种方法的缺点是:可能效率会低一些(K次变成C(K,2)次)。

但是,如果类别很多,每一类的样本量都差不多的时候,其实OVO的方法不一定比OVA方法效率低。

【Linear Models for Binary Classification】林轩田机器学习基石的更多相关文章

  1. (转载)林轩田机器学习基石课程学习笔记1 — The Learning Problem

    (转载)林轩田机器学习基石课程学习笔记1 - The Learning Problem When Can Machine Learn? Why Can Machine Learn? How Can M ...

  2. 【Linear Regression】林轩田机器学习基石

    这一节开始讲基础的Linear Regression算法. (1)Linear Regression的假设空间变成了实数域 (2)Linear Regression的目标是找到使得残差更小的分割线(超 ...

  3. 【 Logistic Regression 】林轩田机器学习基石

    这里提出Logistic Regression的角度是Soft Binary Classification.输出限定在0~1之间,用于表示可能发生positive的概率. 具体的做法是在Linear ...

  4. 【The VC Dimension】林轩田机器学习基石

    首先回顾上节课末尾引出来的VC Bound概念,对于机器学习来说,VC dimension理论到底有啥用. 三点: 1. 如果有Break Point证明是一个好的假设集合 2. 如果N足够大,那么E ...

  5. 【Theory of Generalization】林轩田机器学习基石

    紧接上一讲的Break Point of H.有一个非常intuition的结论,如果break point在k取到了,那么k+1, k+2,... 都是break point. 那么除此之外,我们还 ...

  6. 【Training versus Testing】林轩田机器学习基石

    接着上一讲留下的关子,机器学习是否可行与假设集合H的数量M的关系. 机器学习是否可行的两个关键点: 1. Ein(g)是否足够小(在训练集上的表现是否出色) 2. Eout(g)是否与Ein(g)足够 ...

  7. 林轩田机器学习基石课程学习笔记5 — Training versus Testing

    上节课,我们主要介绍了机器学习的可行性.首先,由NFL定理可知,机器学习貌似是不可行的.但是,随后引入了统计学知识,如果样本数据足够大,且hypothesis个数有限,那么机器学习一般就是可行的.本节 ...

  8. 林轩田机器学习基石笔记3—Types of Learning

    上节课我们主要介绍了解决线性分类问题的一个简单的方法:PLA.PLA能够在平面中选择一条直线将样本数据完全正确分类.而对于线性不可分的情况,可以使用Pocket Algorithm来处理.本节课将主要 ...

  9. 【Linear Support Vector Machine】林轩田机器学习技法

    首先从介绍了Large_margin Separating Hyperplane的概念. (在linear separable的前提下)找到largest-margin的分界面,即最胖的那条分界线.下 ...

随机推荐

  1. Aizu The Maximum Number of Customers

    http://judge.u-aizu.ac.jp/onlinejudge/description.jsp?id=DSL_5_A The Maximum Number of Customers Ide ...

  2. 基于ASP.NET WPF技术及MVP模式实战太平人寿客户管理项目开发(Repository模式)

    亲爱的网友,我这里有套课程想和大家分享,假设对这个课程有兴趣的.能够加我的QQ2059055336和我联系.  课程背景 本课程是教授使用WPF.ADO.NET.MVVM技术来实现太平人寿保险有限公司 ...

  3. python 面向对象(二)--访问限制

    在Class内部,可以有属性和方法,而外部代码可以通过直接调用实例变量的方法来操作数据,这样,就隐藏了内部的复杂逻辑. 但是,从前面Student类的定义来看,外部代码还是可以自由地修改一个实例的na ...

  4. 继续折腾LNK 2005错误

    这次是因为要把一个很久的老项目改成使用Unicode字符集,又一次遇到了LNK 2005错误 先说说怎么把老项目改成Unicode字符集吧,首先要有足够的信心能把项目改好,比如我这次改的项目,也不算很 ...

  5. Spring boot 集成 Swagger

    添加依赖包 <dependency> <groupId>io.springfox</groupId> <artifactId>springfox-swa ...

  6. Redis 命令学习

    每天不学习点新的东西,感觉就有点会被社会淘汰掉了.也许现在学习的知识会很快忘记,下次学习用到这个知识点的时候,再回来翻记录的笔记,我想这样会比从头再学,效率会高点吧. 闲话不多聊,回归正题.今天学习r ...

  7. C语言文件操作类型速查

    文件使用方式 含义 "r"(只读) 为输入打开一个文本文件,不存在则失败 "w"(只写) 为输出打开一个文本文件,不存在则新建,存在则删除后再新建 " ...

  8. Linux实战教学笔记15:用户管理初级(下)

    第十四节 用户管理初级(下) 标签(空格分隔): Linux实战教学笔记-陈思齐 ---更多资料点我查看 1,用户查询相关命令id,finger,users,w,who,last,lastlog,gr ...

  9. LVS+Keepalived-DR模式负载均衡高可用集群

    LVS+Keepalived DR模式负载均衡+高可用集群架构图 工作原理: Keepalived采用VRRP热备份协议实现Linux服务器的多机热备功能. VRRP,虚拟路由冗余协议,是针对路由器的 ...

  10. python中enumerate函数使用

    enumerate()说明 enumerate()是python的内置函数 enumerate在字典上是枚举.列举的意思 对于一个可迭代的(iterable)/可遍历的对象(如列表.字符串),enum ...