【BZOJ4033】[HAOI2015]树上染色 树形DP
【BZOJ4033】[HAOI2015]树上染色
Description
Input
Output
Sample Input
1 2 3
1 5 1
2 3 1
2 4 2
Sample Output
17
【样例解释】
将点1,2染黑就能获得最大收益。
题解:一开始想用网络流,没想到是树形DP~
用f[i][j]表示在i的子树中选择j个黑点所能得到的最大收益(先只考虑在i子树中的边的贡献),然后跑树形背包即可。
然后考虑i到父亲的这条边的贡献,即有多少点对经过了这条边。用子树内的黑(白)点*子树外的黑(白)点个数*边权,最后将贡献加到f值上即可。
注意不要写丑导致复杂度变为O(n^3)哦~
#include <cstdio>
#include <cstring>
#include <iostream>
using namespace std;
const int maxn=2010;
typedef long long ll;
int n,m,cnt;
int to[maxn<<1],next[maxn<<1],head[maxn],fa[maxn],siz[maxn];
ll dep[maxn],f[maxn][maxn],val[maxn<<1];
inline int rd()
{
int ret=0,f=1; char gc=getchar();
while(gc<'0'||gc>'9') {if(gc=='-')f=-f; gc=getchar();}
while(gc>='0'&&gc<='9') ret=ret*10+gc-'0',gc=getchar();
return ret*f;
}
void dfs(int x)
{
f[x][0]=f[x][1]=0,siz[x]=1;
int i,j,k;
for(i=head[x];i!=-1;i=next[i]) if(to[i]!=fa[x])
{
fa[to[i]]=x,dep[to[i]]=val[i],dfs(to[i]);
for(k=min(siz[x],m);k>=0;k--)
for(j=min(siz[to[i]],m-k);j>=0;j--)
f[x][k+j]=max(f[x][k+j],f[x][k]+f[to[i]][j]);
siz[x]+=siz[to[i]];
}
for(i=0;i<=min(siz[x],m);i++) f[x][i]+=dep[x]*(i*(m-i)+(siz[x]-i)*(n-siz[x]-m+i));
}
void add(int a,int b,int c)
{
to[cnt]=b,val[cnt]=c,next[cnt]=head[a],head[a]=cnt++;
}
int main()
{
n=rd(),m=rd();
int i,a,b,c;
memset(head,-1,sizeof(head));
for(i=1;i<n;i++) a=rd(),b=rd(),c=rd(),add(a,b,c),add(b,a,c);
memset(f,0xfe,sizeof(f));
dfs(1);
printf("%lld",f[1][m]);
return 0;
}
【BZOJ4033】[HAOI2015]树上染色 树形DP的更多相关文章
- [BZOJ4033][HAOI2015]树上染色(树形DP)
4033: [HAOI2015]树上染色 Time Limit: 10 Sec Memory Limit: 256 MBSubmit: 2437 Solved: 1034[Submit][Stat ...
- bzoj4033 [HAOI2015]树上染色——树形DP
题目:https://www.lydsy.com/JudgeOnline/problem.php?id=4033 树形DP,状态中加入 x 与父亲之间的边的贡献: 边权竟然是long long... ...
- 洛谷 P3177 [HAOI2015]树上染色 树形DP
洛谷 P3177 [HAOI2015]树上染色 树形DP 题目描述 有一棵点数为 \(n\) 的树,树边有边权.给你一个在 \(0 \sim n\)之内的正整数 \(k\) ,你要在这棵树中选择 \( ...
- bzoj 4033: [HAOI2015]树上染色 [树形DP]
4033: [HAOI2015]树上染色 我写的可是\(O(n^2)\)的树形背包! 注意j倒着枚举,而k要正着枚举,因为k可能从0开始,会使用自己更新一次 #include <iostream ...
- BZOJ 4033 [HAOI2015]树上染色 ——树形DP
可以去UOJ看出题人的题解. 这样的合并,每一个点对只在lca处被考虑到,复杂度$O(n^2)$ #include <map> #include <ctime> #includ ...
- BZOJ4033 HAOI2015 树上染色 【树上背包】
BZOJ4033 HAOI2015 树上染色 Description 有一棵点数为N的树,树边有边权.给你一个在0~N之内的正整数K,你要在这棵树中选择K个点,将其染成黑色,并将其他的N-K个点染成白 ...
- BZOJ4033: [HAOI2015]树上染色(树形DP)
4033: [HAOI2015]树上染色 Time Limit: 10 Sec Memory Limit: 256 MBSubmit: 3461 Solved: 1473[Submit][Stat ...
- [bzoj4033][HAOI2015]树上染色_树形dp
树上染色 bzoj-4033 HAOI-2015 题目大意:给定一棵n个点的树,让你在其中选出k个作为黑点,其余的是白点,收益为任意两个同色点之间距离的和.求最大收益. 注释:$1\le n\le 2 ...
- 【BZOJ4033】【HAOI2015】树上染色 树形DP
题目描述 给你一棵\(n\)个点的树,你要把其中\(k\)个点染成黑色,剩下\(n-k\)个点染成白色.要求黑点两两之间的距离加上白点两两之间距离的和最大.问你最大的和是多少. \(n\leq 200 ...
随机推荐
- Chrome的Waterfall
参考: 1.https://developers.google.com/web/tools/chrome-devtools/network-performance/reference#timing 2 ...
- CentOS7关闭SELinux
查看 [root@dev-server ~]# getenforce Disabled [root@dev-server ~]# /usr/sbin/sestatus -v SELinux statu ...
- 开关按钮(ToggleButton&Switch)
开关按钮,很实用的小东西. 下面上实例: -------------------------------我是邪恶的分割线--------------------------------------- ...
- google兴趣点下载工具
继上次百度兴趣点版本的发布以后,发现百度只能下载本国数据,并且数据完整度还是和google的少一些,所以本次经过钻研与解密,实现了google地图下载工具,版本的主要功能如下: 1.支持多线程下载,支 ...
- Oracle基础 PL-SQL编程基础(3) 循环结构
循环结构: 1. LOOP循环结构 语法: LOOP 要执行的语句; EXIT WHEN <条件> --条件满足则退出循环 END LOOP; 示例:循环输出1-10的整数 DECLA ...
- react-native flex 布局 详解
而在React Native中,有4个容器属性,2个项目属性,分别是: 容器属性:flexDirection flexWrap justifyContent alignItems 项目属性( ...
- vuejs 表单验证插件 VeeValidate
VeeValidate https://baianat.github.io/vee-validate/
- Ubuntu 开机引导文件 /etc/default/grub
# If you change this file, run 'update-grub' afterwards to update # /boot/grub/grub.cfg. GRUB_DEFAUL ...
- 【Java】Java_20 Scanner获取键盘输入
使用Scanner类可以很方便的获取用户的键盘输入,Scanner是一个基于正则表达式子的文本扫描器,他可以从文件.输入流.字符串中解析出基本类型值和字符串值. 例子示意: package com.o ...
- 把质量控制工作往前推进(1)——安装sonarqube
曾经关注点一直在怎么提高应用程序的质量,没太在意代码级别的质量.近期由于某些因素的推动,须要关注到代码级别的质量去,把质量工作尽量往前推,也符合质量控制的原则. 试用了一下sonarqube(老版本 ...