传送门

这个题网上有两种做法,一种是树状数组的,还有一种是暴力模拟的,暴力模拟显然不够优美,所以我用的树状数组

显然可以从初状态推到目标状态,我们也可以考虑倒推回去

首先可以容易发现每列的数字是不变的,所以可以把一些奇奇怪怪的情况先处理掉

每次旋转会使矩阵翻转并且每列取反,发现行其实没什么用,可以丢掉

然后我们定义一个序列的奇偶性为:反的列的数量的奇偶性

那么我们现在就转化为一个问题:

给你一个长度为\(n\)的序列,每次可以选择连续的\(3\)个数翻转并取反,问能否达到\(1,2,3...n\)的状态

假如不考虑符号,考虑翻转操作其实就是交换同一奇偶性的两个相邻数

然后发现奇数列和偶数列是相对独立的,所以可以把奇数列和偶数列拎出来单独处理

然后就是一个经典问题了:每次交换两个相邻的数,使序列有序最少的交换次数是逆序对个数

所以用树状数组求出逆序对就好了。

然后考虑一下符号,奇数列每次翻转会导致偶序列的一个位置被取反(也就是改变偶数列的奇偶性)

所以求出逆序对数后,就可以算出有序状态下的奇数列和偶数列的奇偶性

然后我们手玩一下可以得知,我们可以任意取反同一奇偶性的相邻两个数而不对其他数造成影响

手玩过程如下(定义大写字母为反的,小写字母为正的):

\[\begin{align}
&abcde\\
&CBAde\\
&CBEDa\\
&ebcDa\\
&ebAdC\\
&aBEdC\\
&aBcDe----偶数列取反\\
&adCbe\\
&cDAbe\\
&cBade\\
&AbCde----奇数列取反\\
\end{align}
\]

这样我们就只需要奇数列和偶数列的奇偶性都为偶就是可以达到的状态

代码:

#include<cstdio>
#include<algorithm>
#include<cstring>
#include<iostream>
#include<queue>
using namespace std;
void read(int &x){
char ch;bool ok;
for(ok=0,ch=getchar();!isdigit(ch);ch=getchar())if(ch=='-')ok=1;
for(x=0;isdigit(ch);x=x*10+ch-'0',ch=getchar());if(ok)x=-x;
}
#define rg register
const int maxn=1e5+10;bool flag;
int n,m,x[maxn*4],y[maxn*4],z[maxn*4],mp[4][maxn];
int f[maxn*4],w[maxn*4],tot,ans,ans1,s[2],ss[2];
#define lowbit(i) (i&(-i))
void add(int x){for(rg int i=x;i<=m;i+=lowbit(i))f[i]++;}
int get(int x){int ans=0;for(rg int i=x;i;i-=lowbit(i))ans+=f[i];return ans;}
int main(){
read(m),n=3;
for(rg int i=1;i<=n;i++)
for(rg int j=1;j<=m;j++)
x[i+3*j-3]=i&1,y[i+3*j-3]=j&1,z[i+3*j-3]=j;
for(rg int i=1;i<=n;i++)for(rg int j=1;j<=m;j++)read(mp[i][j]);
for(rg int i=1;i<=n;i++)
for(rg int j=1;j<=m;j++){
int u=1+z[mp[i][j]]*3-3,v=2+z[mp[i][j]]*3-3,w=3+z[mp[i][j]]*3-3;
bool ok1=0,ok2=0,ok3=0;
if(mp[1][j]==u||mp[2][j]==u||mp[3][j]==u)ok1=1;
if(mp[1][j]==v||mp[2][j]==v||mp[3][j]==v)ok2=1;
if(mp[1][j]==w||mp[2][j]==w||mp[3][j]==w)ok3=1;
if(!(ok1&ok2&ok3))flag=1;
if(((i&1)^x[mp[i][j]])||((j&1)^y[mp[i][j]]))flag=1;
}
if(flag){printf("No\n");return 0;}
for(rg int i=1;i<=m;i+=2)if(mp[1][i]!=1+3*z[mp[1][i]]-3)s[1]^=1;
for(rg int i=2;i<=m;i+=2)if(mp[1][i]!=1+3*z[mp[1][i]]-3)s[0]^=1;
for(rg int i=1;i<=m;i+=2)w[++tot]=z[mp[1][i]];
for(rg int i=1;i<=tot;i++)ans+=i-get(w[i])-1,add(w[i]);
for(rg int i=1;i<=m;i++)f[i]=0;tot=0;
for(rg int i=2;i<=m;i+=2)w[++tot]=z[mp[1][i]];
for(rg int i=1;i<=tot;i++)ans1+=i-get(w[i])-1,add(w[i]);
s[1]^=(ans1&1),s[0]^=(ans&1);
if(s[0]||s[1])printf("No\n");
else puts(s[0]!=s[1]?"No":"Yes");
}

AT2166 Rotate 3x3的更多相关文章

  1. 2017国家集训队作业[agc006e]Rotate 3x3

    2017国家集训队作业[agc006e]Rotate 3x3 题意: ​ 给你一个\(3*N\)的网格,每次操作选择一个\(3*3\)的网格,旋转\(180^\circ\).问可不可以使每个位置\(( ...

  2. [AGC006E] Rotate 3x3 树状数组+贪心

    Description ​ XFZ在北京一环内有一套房. ​ XFZ房子的地砖呈网格状分布,是一个3∗N3∗N的网格.XFZ在买下这套房时,每个地砖上有一个数字,位置为(i,j)(i,j)的地砖上的数 ...

  3. 【做题】agc006e - Rotate 3x3——分析&思维

    原文链接 https://www.cnblogs.com/cly-none/p/9800105.html 题意:给出一个三行\(n\)列的矩阵.问它能否由满足\(a_{ij} = 3(j-1) + i ...

  4. 【AGC006E】 Rotate 3x3

    Description ​ 题目链接 Solution ​ 显然每一列只能一起动,乱动则无解. ​ 对原网格按列黑白染色,显然每一列数只能在相同颜色之间交换,乱动则无解. ​ 之后考虑构造方案. ​ ...

  5. [agc006E]Rotate 3x3

    Description 给你一个3*N的网格,位置为(i,j)的网格上的数为i+3(j-1).每次选一个3*3的网格旋转180度,问最后能否使得网格(i,j)的值为ai,j.(5≤N≤105) 如图: ...

  6. Agc_006 E Rotate 3x3

    题目大意 给定一个$3\times N$的方阵,每个位置的数恰好是每一个$[1,3\times N]$中的数. 初始时,每个位置$[x,y]$填的是$3(y-1)+x,(1\leq x\leq N,1 ...

  7. 贪心/构造/DP 杂题选做Ⅲ

    颓!颓!颓!(bushi 前传: 贪心/构造/DP 杂题选做 贪心/构造/DP 杂题选做Ⅱ 51. CF758E Broken Tree 讲个笑话,这道题是 11.3 模拟赛的 T2,模拟赛里那道题的 ...

  8. AtCoder Grand Contest 006

    AtCoder Grand Contest 006 吐槽 这套题要改个名字,叫神仙结论题大赛 A - Prefix and Suffix 翻译 给定两个串,求满足前缀是\(S\),后缀是\(T\),并 ...

  9. RE:从零开始的AGC被虐(到)生活(不能自理)

    RE:从零开始的AGC被虐(到)生活(不能自理) 「一直注视着你,似近似远,总是触碰不到.」 --来自风平浪静的明天 AtCoder Grand Contest 001 B: Mysterious L ...

随机推荐

  1. 查看字符串的编码chardet

    The Universal Character Encoding Detector chardet.detect("str") 返回:{‘confidence’:1.0,'enco ...

  2. CMake简易入门

    使用CMake编译 CMake工具用于生成Makefile文件.用户通过编写CMakeLists.txt文件,描述构建过程(编译.连接.测试.打包),之后通过解析该文件,生成目标平台的Makefile ...

  3. 如何生成HLS协议的M3U8文件

    什么是HLS协议: HLS(Http Live Streaming)是由Apple公司定义的用于实时流传输的协议,HLS基于HTTP协议实现,传输内容包括两部分,一是M3U8描述文件,二是TS媒体文件 ...

  4. 2017.10.1北京清北综合强化班DAY1

    a[问题描述]你是能看到第一题的 friends 呢.——hja何大爷对字符串十分有研究,于是天天出字符串题虐杀 zhx. 何大爷今天为字符串定义了新的权值计算方法.一个字符串 由小写字母组成,字符串 ...

  5. Maven: 自动远程部署

    1. 在settings.xml中的Servers节点中增加Server的登录信息: <server> <id>deploy_server_65</id> < ...

  6. git导入项目

    远程仓库已经存在,使用的是gitblit,作为终端eclipse如何从中拷贝代码呢? 0.准备工作,windows->preference->team->git->config ...

  7. Django-进阶 分页,中间件

    知识预览 分页 中间件 回到顶部 分页 Django的分页器(paginator) view from django.shortcuts import render,HttpResponse # Cr ...

  8. HDOJ1677(铺砖问题)

    Nested Dolls Time Limit: 3000/1000 MS (Java/Others)    Memory Limit: 32768/32768 K (Java/Others)Tota ...

  9. java基础知识(10)---包

    包:定义包用package关键字. 1:对类文件进行分类管理. 2:给类文件提供多层名称空间. 如果生成的包不在当前目录下,需要最好执行classpath,将包所在父目录定义到classpath变量中 ...

  10. 使用 EntityFramework后把一个对象序列化成json字符串引起循环引用的问题

    先看一个T4模板生成的model实体类 著作权归作者所有. 商业转载请联系作者获得授权,非商业转载请注明出处. 作者:卷猫 链接:http://anneke.cn/ArticleInfo/Detial ...