Link:

BZOJ 1266 传送门

Solution:

好不容易自己写出来一道水题,练链式前向星的模板调了一小时o(╯□╰)o

思路非常好想,既然要想让最短路不成立,使最短路部分不连通即可

又要求最小代价,就是比较明显的最小割模型了

Tips:

1、关于如何快速将所有最短路部分重新建图

既然$n<=500$,直接上$floyd$,只要判断边的两端到1与$n$的最短距离加上边权的和是否为最短路距离即可

但一旦$n$增大后能如何简便处理呢?我想到的可以建反图从后往前跑一遍,检查每一条边是否属于任意一条最短路

但对于此题可以简便处理:正向判断$dist[x]+l(x,y)$是否为$dist[y]$即可

我们没有必要只筛选出最短路的边,只要保证非最短路到不了终点即可,算是用时间换代码长度吧2333

2、对于链式前向星实现的网络流算法

(1)$edge$数组的下标一定要从0开始,这样才能使得$edge[i]$与$edge[i^1]$互为反边

(2)由于上一条原则,$head$数组一定要初始化为-1,而不是-1与0皆可

以前只用$vector$写还是不太行啊……

Code:

#include <bits/stdc++.h>

using namespace std;
const int MAXN=,MAXM=MAXN*MAXN,INF=<<;
int n,m,f[MAXN][MAXN];
struct data{int x,y,t,c;}dat[MAXM]; namespace Max_Flow //最大流
{
int head[MAXN],S,T,level[MAXN],iter[MAXN],tot=-; //数组坐标一定要从0开始
struct edge{int nxt,to,cap;}e[MAXM<<]; void add_edge(int from,int to,int cap)
{
e[++tot].nxt=head[from];e[tot].to=to;e[tot].cap=cap;head[from]=tot;
e[++tot].nxt=head[to];e[tot].to=from;e[tot].cap=;head[to]=tot;
} bool bfs()
{
memset(level,-,sizeof(level));
queue<int> q;q.push(S);level[S]=;
while(!q.empty())
{
int u=q.front();q.pop();
for(int i=head[u];i!=-;i=e[i].nxt)
if(e[i].cap && level[e[i].to]==-)
level[e[i].to]=level[u]+,q.push(e[i].to);
}
return (level[T]!=-);
} int dfs(int v,int f)
{
if(v==T) return f;
int ret=;
for(int &i=iter[v];i!=-;i=e[i].nxt)
{
if(level[e[i].to]==level[v]+ && e[i].cap)
{
int d=dfs(e[i].to,min(f,e[i].cap));
e[i].cap-=d;e[i^].cap+=d;
f-=d;ret+=d;if(!f) break;
}
}
return ret;
} int Dinic()
{
int ret=;
while(bfs())
{
for(int i=;i<MAXN;i++) iter[i]=head[i];
ret+=dfs(S,INF);
}
return ret;
}
} int main()
{
using namespace Max_Flow;
scanf("%d%d",&n,&m);
memset(f,0x3f,sizeof(f));S=;T=n;
for(int i=;i<=n;i++) f[i][i]=;
for(int i=;i<=m;i++)
{
scanf("%d%d%d%d",&dat[i].x,&dat[i].y,&dat[i].t,&dat[i].c);
int x=dat[i].x,y=dat[i].y;
f[x][y]=f[y][x]=dat[i].t;
}
for(int k=;k<=n;k++) //最短路部分
for(int i=;i<=n;i++)
for(int j=;j<=n;j++)
f[i][j]=min(f[i][j],f[i][k]+f[k][j]);
printf("%d\n",f[][n]); memset(head,-,sizeof(head)); //head一定要赋为-1
for(int i=;i<=m;i++)
{
int x=dat[i].x,y=dat[i].y;
if(f[][x]+dat[i].t+f[y][n]==f[][n])
add_edge(x,y,dat[i].c);
if(f[][y]+dat[i].t+f[x][n]==f[][n])
add_edge(y,x,dat[i].c);
}
printf("%d\n",Dinic());
return ;
}

[BZOJ 1266] 上学路线Route的更多相关文章

  1. BZOJ 1266 上学路线route(最小割)

    题目链接:http://61.187.179.132/JudgeOnline/problem.php?id=1266 题意:给出一个无向图,每条边有长度和代价.求出1到n的最短路.之后删掉一些边使得1 ...

  2. BZOJ 1266 上学路线(最短路+最小割)

    给出n个点的无向图,每条边有两个属性,边权和代价. 第一问求1-n的最短路.第二问求用最小的代价删边使得最短路的距离变大. 对于第二问.显然该删除的是出现在最短路径上的边.如果我们将图用最短路跑一遍预 ...

  3. BZOJ 1266: [AHOI2006]上学路线route(最短路+最小割)

    第一问最短路.第二问,先把最短路的图建出来(边(u,v)满足d[s->u]+d[v->t]+d(u,v)==最短路径长度,就在图中,可以从源点和汇点分别跑一次最短路得到每个点到源点和汇点的 ...

  4. bzoj 1266 [AHOI2006] 上学路线 route 题解

    转载请注明:http://blog.csdn.net/jiangshibiao/article/details/23989499 [原题] 1266: [AHOI2006]上学路线route Time ...

  5. bzoj 1266 1266: [AHOI2006]上学路线route

    1266: [AHOI2006]上学路线route Time Limit: 3 Sec  Memory Limit: 162 MBSubmit: 2356  Solved: 841[Submit][S ...

  6. bzoj1266 [AHOI2006]上学路线route floyd建出最短路图+最小割

    1266: [AHOI2006]上学路线route Time Limit: 3 Sec  Memory Limit: 162 MBSubmit: 2490  Solved: 898[Submit][S ...

  7. bzoj1266 [AHOI2006]上学路线route floyd+最小割

    1266: [AHOI2006]上学路线route Time Limit: 3 Sec  Memory Limit: 162 MBSubmit: 2490  Solved: 898[Submit][S ...

  8. 【BZOJ1266】[AHOI2006]上学路线route Floyd+最小割

    [BZOJ1266][AHOI2006]上学路线route Description 可可和卡卡家住合肥市的东郊,每天上学他们都要转车多次才能到达市区西端的学校.直到有一天他们两人参加了学校的信息学奥林 ...

  9. BZOJ 3782: 上学路线 [Lucas定理 DP]

    3782: 上学路线 Time Limit: 10 Sec  Memory Limit: 128 MBSubmit: 192  Solved: 75[Submit][Status][Discuss] ...

随机推荐

  1. WIN10把照片查看器设为默认看图软件

    WIN10默认是PHOTO,没有以前WIN7的照片查看器好用,要改回来的方法如下:   在注册表HKEY_LOCAL_MACHINE\SOFTWARE\Microsoft\Windows Photo ...

  2. java程序员笑不死的经历ส้้้้้้้้้

    ส้้้้้้้้้้ส้้้้้้้้้้ส้้้้้้้้้ 1.程序猿最烦两件事,第一件事是别人要求他给自己的代码写文档,第二件呢?是别人的程序没有留下文档. 2.宪法顶个球!中国的法律都是.t ...

  3. python爬取动态网页2,从JavaScript文件读取内容

    import requests import json head = {"user-agent":"Mozilla/5.0 (Windows NT 6.1; WOW64) ...

  4. wireshark简单使用

    过滤表达式的规则   表达式规则   1. 协议过滤   比如TCP,只显示TCP协议. ip.src == 219.216.87.200 and ip.dst==219.216.87.254   2 ...

  5. 网络--OSI七层模型详解

    OSI 七层模型通过七个层次化的结构模型使不同的系统不同的网络之间实现可靠的通讯,因此其最主要的功能就是帮助不同类型的主机实现数据传输 . 完成中继功能的节点通常称为中继系统.在OSI七层模型中,处于 ...

  6. 201621123033 《Java程序设计》第4周学习总结

    1. 本周学习总结 1.1 写出你认为本周学习中比较重要的知识点关键词 父类 子类 继承 覆盖 抽象 1.2 尝试使用思维导图将这些关键词组织起来.注:思维导图一般不需要出现过多的字. 1.3 可选: ...

  7. (转)彻底隐藏Nginx版本号的安全性与方法

    Nginx默认是显示版本号的,如: [root@bkjz ~]# curl -I www.nginx.orgHTTP/1.1 200 OKServer: nginx/0.8.44Date: Tue, ...

  8. 【bzoj3530】[Sdoi2014]数数 AC自动机+数位dp

    题目描述 我们称一个正整数N是幸运数,当且仅当它的十进制表示中不包含数字串集合S中任意一个元素作为其子串.例如当S=(22,333,0233)时,233是幸运数,2333.20233.3223不是幸运 ...

  9. ACM-The Coco-Cola Store

    题目: Once upon a time, there is a special coco-cola store. If you return three empty bottles to the s ...

  10. OnCommand® Unified Manager

    OnCommand Unified Manager Solution Components   The following components are downloaded and installe ...