【洛谷4149】[IOI2011] Race(点分治)
大致题意: 给你一棵树,问长度为\(K\)的路径至少由几条边构成。
点分治
这题应该比较显然是点分治。
主要思路
与常见的点分治套路一样,由于\(K≤1000000\),因此我们可以考虑开个桶\(f\)数组来记录每种长度的路径至少由几条边构成。
但是要注意,每换一个根要将桶清空!
呃,暴力清空肯定\(T\)飞。
于是就需要再开一个\(g\)数组,记录每个答案是在以哪一个节点为根时求出来的,这样就可以避免清空数组了。这也是一个比较常用的套路。
其余的过程与点分板子差不多,就不多说了。
代码
#include<bits/stdc++.h>
#define max(x,y) ((x)>(y)?(x):(y))
#define min(x,y) ((x)<(y)?(x):(y))
#define uint unsigned int
#define LL long long
#define ull unsigned long long
#define swap(x,y) (x^=y,y^=x,x^=y)
#define abs(x) ((x)<0?-(x):(x))
#define INF 1e9
#define Inc(x,y) ((x+=(y))>=MOD&&(x-=MOD))
#define ten(x) (((x)<<3)+((x)<<1))
#define N 200000
#define K 1000000
#define add(x,y,z) (e[++ee].nxt=lnk[x],e[lnk[x]=ee].to=y,e[ee].val=z)
using namespace std;
int n,k,ee=0,lnk[N+5];
struct edge
{
int to,nxt,val;
}e[2*N+5];
class FIO
{
private:
#define Fsize 100000
#define tc() (FinNow==FinEnd&&(FinEnd=(FinNow=Fin)+fread(Fin,1,Fsize,stdin),FinNow==FinEnd)?EOF:*FinNow++)
#define pc(ch) (FoutSize<Fsize?Fout[FoutSize++]=ch:(fwrite(Fout,1,FoutSize,stdout),Fout[(FoutSize=0)++]=ch))
int f,FoutSize,OutputTop;char ch,Fin[Fsize],*FinNow,*FinEnd,Fout[Fsize],OutputStack[Fsize];
public:
FIO() {FinNow=FinEnd=Fin;}
inline void read(int &x) {x=0,f=1;while(!isdigit(ch=tc())) f=ch^'-'?1:-1;while(x=ten(x)+(ch&15),isdigit(ch=tc()));x*=f;}
inline void read_char(char &x) {while(isspace(x=tc()));}
inline void read_string(string &x) {x="";while(isspace(ch=tc()));while(x+=ch,!isspace(ch=tc())) if(!~ch) return;}
inline void write(int x) {if(!x) return (void)pc('0');if(x<0) pc('-'),x=-x;while(x) OutputStack[++OutputTop]=x%10+48,x/=10;while(OutputTop) pc(OutputStack[OutputTop]),--OutputTop;}
inline void write_char(char x) {pc(x);}
inline void write_string(string x) {register int i,len=x.length();for(i=0;i<len;++i) pc(x[i]);}
inline void end() {fwrite(Fout,1,FoutSize,stdout);}
}F;
class Class_DotSolver//点分治
{
private:
int ans,rt,top,f[K+5],g[K+5],used[N+5],Size[N+5],Max[N+5],dis[N+5],len[N+5],Stack[N+5];
inline void GetRt(int x,int lst,int sum)//找重心做根
{
register int i;
for(i=lnk[x],Size[x]=1,Max[x]=0;i;i=e[i].nxt)
if(e[i].to^lst&&!used[e[i].to]) GetRt(e[i].to,x,sum),Size[x]+=Size[e[i].to],Max[x]=max(Max[x],Size[e[i].to]);
if((Max[x]=max(Max[x],sum-Size[x]))<Max[rt]) rt=x;
}
inline void dfs(int x,int lst)//遍历子树,将各种路径保存下来
{
register int i;
for(i=lnk[Stack[++top]=x];i;i=e[i].nxt)
if(e[i].to^lst&&!used[e[i].to]) dis[e[i].to]=dis[x]+e[i].val,len[e[i].to]=len[x]+1,dfs(e[i].to,x);
}
inline void Solve(int x)//在以x为根的子树中求解
{
register int i,j;
for(i=lnk[x],used[x]=1,g[0]=x;i;i=e[i].nxt)
{
if(used[e[i].to]) continue;
dis[e[i].to]=e[i].val,len[e[i].to]=1,dfs(e[i].to,x);//遍历该子树
for(j=top;j;--j) if(dis[Stack[j]]<=k&&!(g[k-dis[Stack[j]]]^x)) ans=min(ans,len[Stack[j]]+f[k-dis[Stack[j]]]);//更新答案
while(top)
{
if(dis[Stack[top]]<=k) g[dis[Stack[top]]]^x?(g[dis[Stack[top]]]=x,f[dis[Stack[top]]]=len[Stack[top]]):(f[dis[Stack[top]]]=min(f[dis[Stack[top]]],len[Stack[top]]));//更新桶
--top;
}
}
for(i=lnk[x];i;i=e[i].nxt) if(!used[e[i].to]) GetRt(e[i].to,rt=0,Size[e[i].to]),Solve(rt);//继续对子树进行处理
}
public:
inline int GetAns() {return (void)(ans=Max[0]=INF,GetRt(1,rt=0,n),Solve(rt)),ans==INF?-1:ans;}//求答案
}DotSolver;
int main()
{
register int i,x,y,z;
for(F.read(n),F.read(k),i=1;i<n;++i) F.read(x),F.read(y),F.read(z),++x,++y,add(x,y,z),add(y,x,z);//注意细节,是从0开始编号的,所以将x和y各加1
return F.write(DotSolver.GetAns()),F.end(),0;
}
【洛谷4149】[IOI2011] Race(点分治)的更多相关文章
- 洛谷 4149 [IOI2011]Race——点分治
题目:https://www.luogu.org/problemnew/show/P4149 第一道点分治! 点分治大约是每次找重心,以重心为根做一遍树形dp:然后对于该根的每个孩子,递归下去.递归之 ...
- 洛谷$P4149\ [IOI2011]\ Race$ 点分治
正解:点分治 解题报告: 传送门$QwQ$ 昂先不考虑关于那个长度的限制考虑怎么做? 就开个桶,记录所有边的取值,每次加入边的时候查下是否可行就成$QwQ$ 然后现在考虑加入这个长度的限制?就考虑把这 ...
- 模板—点分治B(合并子树)(洛谷P4149 [IOI2011]Race)
洛谷P4149 [IOI2011]Race 点分治作用(目前只知道这个): 求一棵树上满足条件的节点二元组(u,v)个数,比较典型的是求dis(u,v)(dis表示距离)满足条件的(u,v)个数. 算 ...
- 洛谷P4149 [IOI2011]Race(点分治)
题目描述 给一棵树,每条边有权.求一条简单路径,权值和等于 KK ,且边的数量最小. 输入输出格式 输入格式: 第一行:两个整数 n,kn,k . 第二至 nn 行:每行三个整数,表示一条无向边的 ...
- [洛谷P4149][IOI2011]Race
题目大意:给一棵树,每条边有边权.求一条简单路径,权值和等于$K$,且边的数量最小. 题解:点分治,考虑到这是最小值,不满足可减性,于是点分中的更新答案的地方计算重复的部分要做更改,就用一个数组记录前 ...
- 洛谷 P4149 [IOI2011]Race-树分治(点分治,不容斥版)+读入挂-树上求一条路径,权值和等于 K,且边的数量最小
P4149 [IOI2011]Race 题目描述 给一棵树,每条边有权.求一条简单路径,权值和等于 KK,且边的数量最小. 输入格式 第一行包含两个整数 n, Kn,K. 接下来 n - 1n−1 行 ...
- BZOJ 2599: [IOI2011]Race( 点分治 )
数据范围是N:20w, K100w. 点分治, 我们只需考虑经过当前树根的方案. K最大只有100w, 直接开个数组CNT[x]表示与当前树根距离为x的最少边数, 然后就可以对根的子树依次dfs并更新 ...
- 洛谷SP22343 NORMA2 - Norma(分治,前缀和)
洛谷题目传送门 这题推式子恶心..... 考虑分治,每次统计跨过\(mid\)的所有区间的答案和.\(i\)从\(mid-1\)到\(l\)枚举,统计以\(i\)为左端点的所有区间. 我们先维护好\( ...
- bzoj2599/luogu4149 [IOI2011]Race (点分治)
点分治.WA了一万年. 重点就是统计答案的方法 做法一(洛谷AC bzojWA 自测WA): 做点x时记到x距离为k的边数最小值为dis[k],然后对每一对有值的dis[i]和dis[K-i],给an ...
- [IOI2011]Race 点分治
[IOI2011]Race LG传送门 点分治板子题. 直接点分治统计,统计的时候开个桶维护下就好了. 注(tiao)意(le)细(hen)节(jiu). #include<cstdio> ...
随机推荐
- CodeForces 125D【鸽巢原理】
哇塞?开始的三个数其中两个数一定能确定一个序列.(鸽巢原理) #include <bits/stdc++.h> using namespace std; typedef long long ...
- Python实现返回指定范围内的所有素数
# 获取a, b范围的所有素数 def func(a, b): li = [] for i in range(a, b+1): for j in range(2, i): if i % j == 0: ...
- 三层登录——C#版
前言 前期了解三层架构主要是由UI层.BLL层和DAL层三部分构成.看到大牛们都采用三层的思想实现了登录,本菜鸟暗暗地站在了他们的肩膀上. 自己理解 对于三层自己的理解是:就像我们对一个大型的公司去找 ...
- docker 推送镜像到私有地址
下面针对的都是docker官网的地址 先登录 docker login 输入docker ID ID不是你的注册邮箱,指的是你登录后显示的ID,然后输入密码 ....此时认为你已经登陆成功了 接着看下 ...
- Centos下搭建nginx反向代理
上一节已经用编译的方式搭建好了一个nginx,链接在下面 https://www.toutiao.com/i6693130510777975300/ 然后这次我们把上次搭建好的nginx作为反向代理的 ...
- 前端 HTML-CSS 规范
黄金定律 一个项目应该永远遵循同一套编码规范! 不管有多少人共同参与同一项目,一定要确保每一行代码都像是同一个人编写的. HTML 语法 用两个空格来代替制表符(tab) – 这是唯一能保证在所有环境 ...
- nodejs安装及使用步骤详解
就一段小小的时间不用,就忘得差不多了,果然好记性不如乱笔头. 1.必须要安装node环境(建议装在C盘,这是一个系统盘)+安装mongoose数据库 +Robot 3T之于mongodb就相当于so ...
- MD5-UTF8-大写加密
private string GetMD5Hash(string str) { string md5Str = ""; byte[] buffer = Encoding.UTF8. ...
- web应用,http协议简介,web框架
一.web应用 web应用程序是一种可以通过Web访问的应用程序,程序的最大好处是用户很容易访问应用程序,用户只需要有浏览器即可,不需要再安装其他软件.应用程序有两种模式C/S.B/S.C/S是客户端 ...
- web 中防止sql注入
public class SqlInject:Page { //检测到注入后的处理方式: 0:仅警告:1:警告+记录:2:警告+自定义错误页面:3:警告+记录+自定义错误页面 ; private co ...