机器学习:多项式回归(scikit-learn中的多项式回归和 Pipeline)
一、scikit-learn 中的多项式回归
1)实例过程
模拟数据
import numpy as np
import matplotlib.pyplot as plt x = np.random.uniform(-3, 3, size=100)
X = x.reshape(-1, 1)
y = 0.5 * x**2 + x + np.random.normal(0, 1, 100)
- 相对于scikit-learn中的多项式回归,自己使用多项式回归,就是在使用线性回归前,改造了样本的特征;
- sklearn 中,多项式回归算法(PolynomialFeatures)封装在了 preprocessing 包中,也就是对数据的预处理;
- 对于多项式回归来说,主要做的事也是对数据的预处理,为数据添加一些新的特征;
使用 PolynomialFeatures 生成新的数据集
from sklearn.preprocessing import PolynomialFeatures poly = PolynomialFeatures(degree=2)
poly.fit(X)
X2 = poly.transform(X) X2.shape
# 输出:(100, 3) X2[:5, :]
# 输出:
array([[1. , 2.98957009, 8.93752931],
[1. , 0.5481444 , 0.30046228],
[1. , 2.43260405, 5.91756246],
[1. , 1.86837318, 3.49081835],
[1. , 2.89120321, 8.35905598]])
- degree=2:表示对原本数据集 X 添加一个最多为 2 次幂的相应的多项式特征;
- poly.transform(X):将原本数据集 X 的每一种特征,转化为对应的多项式的特征;
- X2:生成的多项式特征相应的数据集;
- 疑问:X 的样本原有一个特征,经过 PolynomialFeatures 后生成了 3 个特征?
- X2 == [1., x, x2];
- 使用 LinearRegression 类操作新的数据集 X2
from sklearn.linear_model import LinearRegression lin_reg2 = LinearRegression()
lin_reg2.fit(X2, y)
y_predict2 = lin_reg2.predict(X2) - 绘制拟合结果
plt.scatter(x, y)
plt.plot(np.sort(x), y_predict2[np.argsort(x)], color='r')
plt.show()
二、Pipeline(管道)
1)疑问:如果数据集有 n 个特征,经过 PolynomialFeatures 生成的数据集有多少个?
模拟数据集
X = np.arange(1, 11).reshape(-1, 2)
X.shape
# 输出:(5, 2) X
# 输出:
array([[ 1, 2],
[ 3, 4],
[ 5, 6],
[ 7, 8],
[ 9, 10]])
- 当 degree = 2
poly = PolynomialFeatures(degree=2)
poly.fit(X)
X2 = poly.transform(X) X2.shape
# 输出:(5, 6) X2
# 输出:
array([[ 1., 1., 2., 1., 2., 4.],
[ 1., 3., 4., 9., 12., 16.],
[ 1., 5., 6., 25., 30., 36.],
[ 1., 7., 8., 49., 56., 64.],
[ 1., 9., 10., 81., 90., 100.]]) - 当 degree = 3
poly = PolynomialFeatures(degree=3)
poly.fit(X)
X3 = poly.transform(X) X3.shape
# 输出:(5, 10) X3
# 输出:
array([[ 1., 1., 2., 1., 2., 4., 1., 2., 4., 8.],
[ 1., 3., 4., 9., 12., 16., 27., 36., 48., 64.],
[ 1., 5., 6., 25., 30., 36., 125., 150., 180., 216.],
[ 1., 7., 8., 49., 56., 64., 343., 392., 448., 512.],
[ 1., 9., 10., 81., 90., 100., 729., 810., 900., 1000.]])
- 分析:经过 PolynomialFeatures 之后,样本特征呈指数增长,新增的特征包含了所有可能的所样式;
2)Pipeline 过程
使用多项式回归的过程
- 将原始数据集 X 讲过 PolynomialFeatures 算法,生成多项式的特征的样本的数据集;
- 数据归一化(StandardScaler):如果 degree 非常的大,样本生成的特征的数据的差距也会变动非常的大;
- 将新的数据集传给线性回归算法:LinearRegression;
- Pipeline 将这 3 步合为一体,使得每次使用多项式回归时,不需要重复这 3 个过程;
- 具体操作过程
- 模拟数据
x = np.random.uniform(-3, 3, size=100)
X = x.reshape(-1, 1)
y = 0.5 * x**2 + x + 2 + np.random.normal(0, 1, 100) - 使用 Pipeline
from sklearn.pipeline import Pipeline
from sklearn.linear_model import LinearRegression
from sklearn.preprocessing import PolynomialFeatures
from sklearn.preprocessing import StandardScaler
import numpy as np
import matplotlib.pyplot as plt # 实例化 Pipeline
poly_reg = Pipeline([
("poly", PolynomialFeatures(degree=2)),
("std_scaler", StandardScaler()),
("lin_reg", LinearRegression())
]) poly_reg.fit(X, y)
y_predict = poly_reg.predict(X) - 绘制拟合的结果
plt.scatter(x, y)
plt.plot(np.sort(x), y_predict[np.argsort(x)], color='r')
plt.show()
机器学习:多项式回归(scikit-learn中的多项式回归和 Pipeline)的更多相关文章
- 机器学习框架Scikit Learn的学习
一 安装 安装pip 代码如下:# wget "https://pypi.python.org/packages/source/p/pip/pip-1.5.4.tar.gz#md5=83 ...
- (原创)(三)机器学习笔记之Scikit Learn的线性回归模型初探
一.Scikit Learn中使用estimator三部曲 1. 构造estimator 2. 训练模型:fit 3. 利用模型进行预测:predict 二.模型评价 模型训练好后,度量模型拟合效果的 ...
- (原创)(四)机器学习笔记之Scikit Learn的Logistic回归初探
目录 5.3 使用LogisticRegressionCV进行正则化的 Logistic Regression 参数调优 一.Scikit Learn中有关logistics回归函数的介绍 1. 交叉 ...
- Scikit Learn: 在python中机器学习
转自:http://my.oschina.net/u/175377/blog/84420#OSC_h2_23 Scikit Learn: 在python中机器学习 Warning 警告:有些没能理解的 ...
- sklearn中的多项式回归算法
sklearn中的多项式回归算法 1.多项式回归法多项式回归的思路和线性回归的思路以及优化算法是一致的,它是在线性回归的基础上在原来的数据集维度特征上增加一些另外的多项式特征,使得原始数据集的维度增加 ...
- 【笔记】多项式回归的思想以及在sklearn中使用多项式回归和pipeline
多项式回归以及在sklearn中使用多项式回归和pipeline 多项式回归 线性回归法有一个很大的局限性,就是假设数据背后是存在线性关系的,但是实际上,具有线性关系的数据集是相对来说比较少的,更多时 ...
- scikit learn 模块 调参 pipeline+girdsearch 数据举例:文档分类 (python代码)
scikit learn 模块 调参 pipeline+girdsearch 数据举例:文档分类数据集 fetch_20newsgroups #-*- coding: UTF-8 -*- import ...
- Scikit Learn
Scikit Learn Scikit-Learn简称sklearn,基于 Python 语言的,简单高效的数据挖掘和数据分析工具,建立在 NumPy,SciPy 和 matplotlib 上.
- 机器学习在IC设计中的应用(二)--根据GBA时序结果来预测PBA
本文转自:自己的微信公众号<集成电路设计及EDA教程> <机器学习在IC设计中的应用(二)--根据GBA时序结果来预测PBA> AOCV AOCV全称:Advanced OCV ...
随机推荐
- JMeter学习(八)JDBC测试计划-连接Oracle
一.测试环境准备 Oracle:10g JDBC驱动:classes12.jar oracle安装目录下(oracle\product\10.2.0\db_1\jdbc\lib\classes1 ...
- springmvc返回视图(解析)
1.什么是视图? 视图就是展示给用户看的结果.可以是很多形式,例如:html.JSP.excel表单.Word文档.PDF文档.JSON数据.freemarker模板视图等等. 2.传统JSP和JST ...
- Logistic回归python实现
2017-08-12 Logistic 回归,作为分类器: 分别用了梯度上升,牛顿法来最优化损失函数: # -*- coding: utf-8 -*- ''' function: 实现Logistic ...
- C#中利用WebBrowser控件,获得HTML源码
最近获得网页的几个老程序都不能用了. 我原来用 如下代码获得网页html 源码: <pre name="code" class="csharp"> ...
- linux 查看各目录(文件夹)下文件大小
# 显示总大小(/下全部文件占用大小) du -sh /* | sort -nr # 显示各文件夹的大小(当前文件夹下各文件夹的大小) du --max-depth=1
- jquery开发js插件
1.需要掌握的知识点 1)(function($){...}(jQuery)):实际上就是匿名函数并且函数用()阔起来,形成闭包,外界对其内部函数没有影响 $(function(){…}); jQ ...
- MapReduce-join连接
join连接 MapReduce能够执行大型数据集间的连接(join)操作.连接操作的具体实现技术取决于数据集的规模及分区方式连接操作如果由mapper执行,则称为“map端连接”:如果由reduce ...
- 免配置环境变量使用Tomcat+设置项目主页路径为http://localhost:8080+修改tomcat端口号
一.免配置jdk JAVA_HOME和tomcat CATALINA_HOME环境变量使用tomcat 众说周知,使用tomcat需要有java环境,一般情况下需要配置jdk和tomcat的路径到w ...
- HDU1565 方格取数(1)
Problem Description 给你一个n*n的格子的棋盘,每个格子里面有一个非负数.从中取出若干个数,使得任意的两个数所在的格子没有公共边,就是说所取的数所在的2个格子不能相邻,并且取出的数 ...
- iOS 使用宏定义函数和代码块
iOS使用宏定义函数和代码块 今天在开发过程中碰到一个问题:就是父类中要向外发送通知,然后子类中或者其他类中来接收它.当然一般是把它写到类方法中去,但是有个问题,就是如果调用的类不是它的子类,就不能直 ...