Mathematics Base - 期望、方差、协方差、相关系数总结
参考:《深度学习500问》
期望
在概率论和统计学中,数学期望(或均值,亦简称期望)是试验中每次可能结果的概率乘以其结果的总和。它反映随机变量平均取值的大小。
- 线性运算: \(E(ax+by+c) = aE(x)+bE(y)+c\)
- 推广形式: \(E(\sum_{k=1}^{n}{a_ix_i+c}) = \sum_{k=1}^{n}{a_iE(x_i)+c}\)
- 函数期望:设\(f(x)\)为\(x\)的函数,则\(f(x)\)的期望为
- 离散函数: \(E(f(x))=\sum_{k=1}^{n}{f(x_k)P(x_k)}\)
- 连续函数: \(E(f(x))=\int_{-\infty}^{+\infty}{f(x)p(x)dx}\)
注意:
- 函数的期望不等于期望的函数,即\(E(f(x))=f(E(x))\)
- 一般情况下,乘积的期望不等于期望的乘积。
- 如果\(X\)和\(Y\)相互独立,则\(E(xy)=E(x)E(y)\)。
方差
概率论中方差用来度量随机变量和其数学期望(即均值)之间的偏离程度。方差是一种特殊的期望。定义为:
\[
Var(x) = E((x-E(x))^2)
\]
方差性质:
1)\(Var(x) = E(x^2) -E(x)^2\)
2)常数的方差为0;
3)方差不满足线性性质;
4)如果\(X\)和\(Y\)相互独立, \(Var(ax+by)=a^2Var(x)+b^2Var(y)\)
协方差
协方差是衡量两个变量线性相关性强度及变量尺度。 两个随机变量的协方差定义为:
\[
Cov(x,y)=E((x-E(x))(y-E(y)))
\]
方差是一种特殊的协方差。当\(X=Y\)时,\(Cov(x,y)=Var(x)=Var(y)\)。
协方差性质:
1)独立变量的协方差为0。
2)协方差计算公式:
\[
Cov(\sum_{i=1}^{m}{a_ix_i}, \sum_{j=1}^{m}{b_jy_j}) = \sum_{i=1}^{m} \sum_{j=1}^{m}{a_ib_jCov(x_iy_i)}
\]
3)特殊情况:
\[
Cov(a+bx, c+dy) = bdCov(x, y)
\]
相关系数
相关系数是研究变量之间线性相关程度的量。两个随机变量的相关系数定义为:
\[
Corr(x,y) = \frac{Cov(x,y)}{\sqrt{Var(x)Var(y)}}
\]
相关系数的性质:
1)有界性。相关系数的取值范围是 ,可以看成无量纲的协方差。
2)值越接近1,说明两个变量正相关性(线性)越强。越接近-1,说明负相关性越强,当为0时,表示两个变量没有相关性。
Mathematics Base - 期望、方差、协方差、相关系数总结的更多相关文章
- 一起啃PRML - 1.2.2 Expectations and covariances 期望和协方差
一起啃PRML - 1.2.2 Expectations and covariances 期望和协方差 @copyright 转载请注明出处 http://www.cnblogs.com/chxer/ ...
- 什么是机器学习的特征工程?【数据集特征抽取(字典,文本TF-Idf)、特征预处理(标准化,归一化)、特征降维(低方差,相关系数,PCA)】
2.特征工程 2.1 数据集 2.1.1 可用数据集 Kaggle网址:https://www.kaggle.com/datasets UCI数据集网址: http://archive.ics.uci ...
- 51nod 1098 最小方差 排序+前缀和+期望方差公式
题目: 题目要我们,在m个数中,选取n个数,求出这n个数的方差,求方差的最小值. 1.我们知道,方差是描述稳定程度的,所以肯定是着n个数越密集,方差越小. 所以我们给这m个数排个序,从连续的n个数中找 ...
- Mathematics Base - Tensor
以下是我对张量的理解,备注是具体解释,Xmind导出的图片没法显示出来,主要还是将张量间的关系画出来,方便理解. 图1 张量
- 最大似然估计、n阶矩、协方差(矩阵)、(多元)高斯分布 学习摘要
最大似然估计 似然与概率 在统计学中,似然函数(likelihood function,通常简写为likelihood,似然)和概率(Probability)是两个不同的概念.概率是在特定环境下某件事 ...
- 可决系数R^2和方差膨胀因子VIF
然而很多时候,被筛选的特征在模型上线的预测效果并不理想,究其原因可能是由于特征筛选的偏差. 但还有一个显著的因素,就是选取特征之间之间可能存在高度的多重共线性,导致模型对测试集预测能力不佳. 为了在筛 ...
- How do I learn mathematics for machine learning?
https://www.quora.com/How-do-I-learn-mathematics-for-machine-learning How do I learn mathematics f ...
- [转]概率基础和R语言
概率基础和R语言 R的极客理想系列文章,涵盖了R的思想,使用,工具,创新等的一系列要点,以我个人的学习和体验去诠释R的强大. R语言作为统计学一门语言,一直在小众领域闪耀着光芒.直到大数据的爆发,R语 ...
- Mahout之(三)相似性度量
User CF 和 Item CF 都依赖于相似度的计算,因为只有通过衡量用户之间或物品之间的相似度,才能找到用户的“邻居”,才能完成推荐.上文简单的介绍了相似性的计算,但不完全,下面就对常用的相似度 ...
随机推荐
- 启动Hadoop时DFSZKFailoverController没有启动
在启动Hadoop成功后,并没有报错信息,jps查看进程,发现DFSZKFailoverController没有启动成功,后来发现是因为防火墙的原因,关掉重试就OK了 systemctl stop f ...
- 初步认识Express框架渲染视图
给出一个简单的例子,讲述模板渲染的基础功能 在nodejs中使用express框架,默认的是ejs和jade渲染模板,以下是以ejs模板进行解析 1.ejs 模板安装 npm install ejs ...
- Git教程及问题解析
本文来自http://blog.csdn.net/liuxian13183/ ,引用必须注明出处! Git教程 最近用git比较多,做出教程一份,供大家参考. 1. 安装Git,并配置环 ...
- 与STL文件相关的各类学习地址
几个网址: 1.STL :https://en.wikipedia.org/wiki/STL_(file_format)#ASCII_STL 2.一个博客的文章地址: 三维图形数据格式 STL的 读取 ...
- Java的反射机制(应用篇)
Java的的反射机制,是一个很难但却比较有用的概念.反射机制经常出现在框架设计中,大神说:反射是框架设计的灵魂,也就是说要想看懂框架的源代码,必须得掌握反射机制. 作为初学者的我,觉得至少应该掌握它日 ...
- 2018.5.28 PSOC第一枪:基于cypress的蓝牙开发
Cypress-BLE 开发套件可以快速开发 物联网电子产品. PSOC编程特点: A 拖放各PSoC 组件到工作区中,以设计原理图B 完成各组件之间的布线,并配置GPIOC 使用所包含的组件API ...
- Java中的泛型、枚举和注解
1.泛型: 一.为什么要有泛型(Generic)?1.解决元素存储的安全性问题任何类型都可以添加到集合中:类型不安全2.解决获取数据元素时,需要类型强转的问题读取出来的对象需要强转:繁琐可能有Clas ...
- Python语言及其应用 第2章
- URAL1517Freedom of Choice(后缀数组)
Background Before Albanian people could bear with the freedom of speech (this story is fully describ ...
- BZOJ1455:罗马游戏
题目传送门:https://lydsy.com/JudgeOnline/problem.php?id=1455 浅谈左偏树:https://www.cnblogs.com/AKMer/p/102466 ...